Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electron transport in molecular junctions

Abstract

Building an electronic device using individual molecules is one of the ultimate goals in nanotechnology. To achieve this it will be necessary to measure, control and understand electron transport through molecules attached to electrodes. Substantial progress has been made over the past decade and we present here an overview of some of the recent advances. Topics covered include molecular wires, two-terminal switches and diodes, three-terminal transistor-like devices and hybrid devices that use various different signals (light, magnetic fields, and chemical and mechanical signals) to control electron transport in molecules. We also discuss further issues, including molecule–electrode contacts, local heating- and current-induced instabilities, stochastic fluctuations and the development of characterization tools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of a single molecule attached to two electrodes as a basic component in molecular electronics.
Figure 2: Length dependence of conductance G for saturated chains (alkanes13 and peptides12) and conjugated molecules (carotenoids23).
Figure 3: a, A molecular diode consisting of a single molecule (1') covalently linked to two Au electrodes of a mechanically controlled break junction.
Figure 4: Demonstration of two-state molecular switching behaviour in three different platforms.
Figure 5: Controlling current through a molecule using different gates.
Figure 6: Controlling electron transport through a redox molecule, PTCDI, by switching the redox state of the molecule with an electrochemical gate.

Similar content being viewed by others

References

  1. Cuniberti, G., Fagas, G. & Richter, K. Introducing Molecular Electronics. (Springer, Berlin and Heidelberg, 2005).

    Book  Google Scholar 

  2. Selzer, Y. & Allara, D. L. Single-Molecule Electrical Junctions. Ann. Rev. Phys. Chem. 57, 593–623 (2006).

    Article  CAS  Google Scholar 

  3. Joachim, C. & Ratner, M. A. Molecular Electronics Special Feature: Molecular electronics: Some views on transport junctions and beyond. Proc. Natl Acad. Sci. USA 102, 8801–8808 (2005).

    Article  CAS  Google Scholar 

  4. Weiss, E. A., Wasielewski, M. R. & Ratner, M. A. Molecules as wires: Molecule-assisted movement of charge and energy. Top. Curr. Chem. 257, 103–133 (2005).

    Article  Google Scholar 

  5. Slowinski, K., Chamberlain, R. V., Miller, C. J. & Majda, M. Through-bond and chain-to-chain coupling. Two pathways in electron tunneling through liquid alkanethiol monolayers on mercury electrodes. J. Am. Chem. Soc. 119, 11910–11919 (1997).

    Article  CAS  Google Scholar 

  6. Wold, D. J. & Frisbie, C. D. Formation of metal-molecule-metal tunnel junctions: Microcontacts to alkanethiol monolayers with a conducting AFM tip. J. Am. Chem. Soc. 122, 2970–2971 (2000).

    Article  CAS  Google Scholar 

  7. Wang, W., Lee, T. & Reed, M. A. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68, 035416 (2003).

    Article  CAS  Google Scholar 

  8. Haiss, W. et al. Thermal gating of the single molecule conductance of alkanedithiols. Faraday Discuss. 131, 253–264 (2006).

    Article  CAS  Google Scholar 

  9. Xu, B. Q. & Tao, N. J. Measurement of single molecule conductance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  CAS  Google Scholar 

  10. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    Article  CAS  Google Scholar 

  11. Cui, X. D. et al. Reproducible measurement of single-molecule conductivity. Science 294, 571–574 (2001).

    Article  CAS  Google Scholar 

  12. Xiao, X., Xu, B. & Tao, N. Conductance titration of single-peptide molecules. J. Am. Chem. Soc. 126, 5370–5371 (2004).

    Article  CAS  Google Scholar 

  13. Li, X. et al. Conductance of single alkanedithiols: Conduction mechanism and effect of molecule-electrode contacts. J. Am. Chem. Soc. 128, 2135–2141 (2006).

    Article  CAS  Google Scholar 

  14. Hu, Y. B., Zhu, Y., Gao, H. J. & Guo, H. Conductance of an ensemble of molecular wires: A statistical analysis. Phys. Rev. Lett. 95, 156803 (2005).

    Article  CAS  Google Scholar 

  15. Muller, K. H. Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules. Phys. Rev. B 73, 045403 (2006).

    Article  CAS  Google Scholar 

  16. Lee, M. H., Speyer, G. & Sankey, O. F. Electron transport through single alkane molecules with different contact geometries on gold. Phys. Status Solidi B 243, 2021–2029 (2006).

    Article  CAS  Google Scholar 

  17. Ishizuka, K. et al. Effect of molecule-electrode contacts on single-molecule conductivity of mu-conjugated system measured by scanning tunnelling microscopy under ultrahigh vacuum. Japn. J. Appl. Phys. 1 45, 2037–2040 (2006).

    Article  CAS  Google Scholar 

  18. Chidsey, C. E. D. Free energy and temperature dependence of electron transfer at the metal–electrolyte interface. Science 251, 919–922 (1991).

    Article  CAS  Google Scholar 

  19. Bumm, L. A. et al. Are single molecular wires conducting? Science 271, 1705–1707 (1996).

    Article  CAS  Google Scholar 

  20. Kergueris, C. et al. Electron transport through a metal-molecule-metal junction. Phys. Rev. B 59, 12505–12513 (1999).

    Article  CAS  Google Scholar 

  21. Zhitenev, N. B., Meng, H. & Bao, Z. Conductance of small molecular junctions. Phys. Rev. Lett. 88, 226801. (2002).

    Article  CAS  Google Scholar 

  22. Kim, B., Beebe, J. M., Jun, Y., Zhu, X. Y. & Frisbie, C. D. Correlation between HOMO alignment and contact resistance in molecular junctions: Aromatic thiols versus aromatic isocyanides. J. Am. Chem. Soc. 128, 4970–4971 (2006).

    Article  CAS  Google Scholar 

  23. He, J. et al. Electronic decay constant of carotenoid polyenes from single-molecule measurements. J. Am. Chem. Soc. 127, 1384–1385 (2005).

    Article  CAS  Google Scholar 

  24. Xu, B., Li, X., Xiao, X., Sakaguchi, H. & Tao, N. Electromechanical and conductance switching properties of single oligothiophene molecules. Nano Lett. 5, 1491–1495 (2005).

    Article  CAS  Google Scholar 

  25. Kuznetsov, A. M. & Ulstrup, J. Electron Transfer in Chemistry and Biology. An Introduction to the Theory. (Wiley, Chichester, 1999).

    Google Scholar 

  26. Weiss, E. A. et al. Conformationally gated switching between superexchange and hopping within oligo-p-phenylene-based molecular wires. J. Am. Chem. Soc. 127, 11842–11850 (2005).

    Article  CAS  Google Scholar 

  27. Nitzan, A. A relationship between electron-transfer rates and molecular conduction. J. Phys. Chem. A 105, 2677–2679 (2001).

    Article  CAS  Google Scholar 

  28. Aviram, A. & Ratner, M. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  CAS  Google Scholar 

  29. Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).

    Article  CAS  Google Scholar 

  30. Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999).

    Article  CAS  Google Scholar 

  31. Metzger, R. M. Unimolecular electrical rectifiers. Chem. Rev. 103, 3803–3834 (2003).

    Article  CAS  Google Scholar 

  32. Martin, A. S., Sambles, J. R. & Ashwell, G. J. Molecular rectifier. Phys. Rev. Lett. 70, 218–221 (1993).

    Article  CAS  Google Scholar 

  33. Ng, M. -K. & Yu, L. Synthesis of amphiphilic conjugated diblock oligomers as molecular diodes. Angew. Chem. Int. Edn 41, 3598–3601 (2002).

    Article  CAS  Google Scholar 

  34. Jiang, P., Morales, G. M., You, W. & Yu, L. Synthesis of diode molecules and their sequential assembly to control electron transport. Angew. Chem. Int. Edn 43, 4471–4475 (2004).

    Article  CAS  Google Scholar 

  35. Smit, R. H. M. et al. Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002).

    Article  CAS  Google Scholar 

  36. Elbing, M. et al. A single-molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).

    Article  CAS  Google Scholar 

  37. Liu, R., Ke, S. H., Yang, W. T. & Baranger, H. U. Organometallic molecular rectification. J. Chem. Phys. 124, 024718 (2006).

    Article  CAS  Google Scholar 

  38. Reichert, J. et al. Driving current through single organic molecules. Phy. Rev. Lett. 88, 176804 (2002).

    Article  CAS  Google Scholar 

  39. Kushmerick, J. G., Whitaker, C. M., Pollack, S. K., Schull, T. L. & Shashidar, R. Tuning current rectification across molecular junctions. Nanotechnology 15, S489–S493 (2004).

    Article  CAS  Google Scholar 

  40. Chabinyc, M. L. et al. Molecular rectification in a metal-insulator-metal junction based on self-assembled monolayers. J. Am. Chem. Soc. 124, 11730–11736 (2002).

    Article  CAS  Google Scholar 

  41. Xiao, X., Xu, B. & Tao, N. Changes in the conductance of single peptide molecules upon metal-ion binding. Angew. Chem. Int. Edn 43, 6148–6152 (2004).

    Article  CAS  Google Scholar 

  42. McCreery, R. et al. Molecular rectification and conductance switching in carbon-based molecular junctions by structural rearrangement accompanying electron injection. J. Am. Chem. Soc. 125, 10748–10758 (2003).

    Article  CAS  Google Scholar 

  43. Mujica, V., Ratner, M. A. & Nitzan, A. Molecular rectification: why is it so rare? Chem. Phys. 281, 147–150 (2002).

    Article  CAS  Google Scholar 

  44. Troisi, A. & Ratner, M. A. Conformational molecular rectifiers. Nano Lett. 4, 591–595 (2004).

    Article  CAS  Google Scholar 

  45. Xue, Y. Q. et al. Negative differential resistance in the scanning-tunneling spectroscopy of organic molecules. Phys. Rev. B 59, R7852–R7855 (1999).

    Article  CAS  Google Scholar 

  46. Fan, F. R. F. et al. Charge transport through self-assembled monolayers of compounds of interest in molecular electronics. J. Am. Chem. Soc. 124, 5550–5560 (2002).

    Article  CAS  Google Scholar 

  47. Rawlett, A. M. et al. Electrical measurements of a dithiolated electronic molecule via conducting atomic force microscopy. Appl. Phys. Lett. 81, 3043–3045 (2002).

    Article  CAS  Google Scholar 

  48. Xiao, X., Nagahara, L. A., Rawlett, A. M. & Tao, N. Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J. Am. Chem. Soc. 127, 9235–9240 (2005).

    Article  CAS  Google Scholar 

  49. Le, J. D., He, Y., Hoye, T. R., Mead, C. C. & Kiehl, R. A. Negative differential resistance in a bilayer molecular junction. Appl. Phys. Lett. 83, 5518–5520 (2003).

    Article  CAS  Google Scholar 

  50. Kiehl, R. A., Le, J. D., Candra, P., Hoye, R. C. & Hoye, T. R. Charge storage model for hysteretic negative-differential resistance in metal-molecule-metal junctions. Appl. Phys. Lett. 88, 172102 (2006).

    Article  CAS  Google Scholar 

  51. Wassel, R. A. C., Grace, M., Fuierer, R. R., Feldheim, D. L. & Gorman, C. B. Attenuating negative differential resistance in an electroactive self-assembled monolayer-based junction. J. Am. Chem. Soc. 126, 295–300 (2004).

    Article  CAS  Google Scholar 

  52. Zeng, C., Wang, H., Wang, B., Yang, J. & Hou, J. G. Negative differential-resistance device involving two C60 molecules. Appl. Phys. Lett. 77, 3595–3597 (2000).

    Article  CAS  Google Scholar 

  53. Guisinger, N. P., Greene, M. E., Basu, R., Baluch, A. S. & Hersam, M. C. Room temperature negative differential resistance through individual organic molecules on silicon surfaces. Nano Lett. 4, 55–59 (2004).

    Article  CAS  Google Scholar 

  54. Salomon, A., Arad-Yellin, R., Shanzer, A., Karton, A. & Cahen, D. Stable room-temperature molecular negative differential resistance based on molecule-electrode interface chemistry. J. Am. Chem. Soc. 126, 11648–11657 (2004).

    Article  CAS  Google Scholar 

  55. Gaudioso, J. & Ho, W. Steric turnoff of vibrationally mediated negative differential resistance in a single molecule. Angew. Chem. Int. Edn 40, 4080–4082 (2001).

    Article  CAS  Google Scholar 

  56. Fan, F. R. F. et al. Electrons are transported through phenylene-ethynylene oligomer monolayers via localized molecular orbitals. J. Am. Chem. Soc., 126, 2568–2573 (2004).

    Article  CAS  Google Scholar 

  57. Karzazi, Y., Cornil, J. & Brédas, J. L. Negative differential resistance behavior in conjugated molecular wires incorporating spacers: A quantum-chemical description. J. Am. Chem. Soc. 123, 10076–10084 (2001).

    Article  CAS  Google Scholar 

  58. Emberly, E. G. & Kirczenow, G. Current-driven conformational changes, charging, and negative differential resistance in molecular wires. Phys. Rev. B 64, 125318 (2001).

    Article  CAS  Google Scholar 

  59. Galperin, M., Ratner, M. A. & Nitzan, A. Hysteresis, switching, and negative differential resistance in molecular junctions: A polaron model. Nano Lett. 5, 125–130 (2005).

    Article  CAS  Google Scholar 

  60. He, J. & Lindsay, S. M. On the mechanism of negative differential resistance in ferrocenylundecanethiol self-assembled monolayers. J. Am. Chem. Soc. 127, 11932–11933 (2005).

    Article  CAS  Google Scholar 

  61. Pitters, J. L. & Wolkow, R. A. Detailed studies of molecular conductance using atomic resolution scanning tunneling microscopy. Nano Lett. 6, 390–397 (2006).

    Article  CAS  Google Scholar 

  62. Reed, M. A., Chen, J., Rawlett, A. M., Price, D. W. & Tour, J. M. Molecular random access memory cell. Appl. Phys. Lett. 78, 3735–3737 (2001).

    Article  CAS  Google Scholar 

  63. Cai, L. T. et al. Reversible bistable switching in nanoscale thiol-substituted oligoaniline molecular junctions. Nano Lett. 5, 2365–2372 (2005).

    Article  CAS  Google Scholar 

  64. Moonen, N. N. P., Flood, A. H., Fernandez, J. M. & Stoddart, J. F. Towards a rational design of molecular switches and sensors from their basic building blocks. Top. Curr. Chem. 262, 99–132 (2005).

    Article  CAS  Google Scholar 

  65. Stewart, D. R. et al. Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett. 4, 133–136 (2004).

    Article  CAS  Google Scholar 

  66. Blum, A. S. et al. Molecularly inherent voltage-controlled conductance switching. Nature Mater. 4, 167–172 (2005).

    Article  CAS  Google Scholar 

  67. Keane, Z. K., Ciszek, J. W., Tour, J. M. & Natelson, D. Three-terminal devices to examine single-molecule conductance switching. Nano Lett. 6, 1518–1521 (2006).

    Article  CAS  Google Scholar 

  68. Qiu, X. H., Nazin, G. V. & Ho, W. Mechanisms of reversible conformational transitions in a single molecule. Phys. Rev. Lett. 93, 196806 (2004).

    Article  CAS  Google Scholar 

  69. Di Ventra, M., Pantelides, S. T. & Lang, N. D. The benzene molecule as a molecular resonant-tunneling transistor. Appl. Phys. Lett. 76, 3448–3450 (2000).

    Article  CAS  Google Scholar 

  70. Damle, P., Rakshit, T., Paulsson, M. & Datta, S. Current-voltage characteristics of molecular conductors: two versus three terminal. IEEE T. Nanotechnol. 1, 145–1153 (2002).

    Article  Google Scholar 

  71. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  CAS  Google Scholar 

  72. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  CAS  Google Scholar 

  73. Liang, W. J., Shores, M., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    Article  CAS  Google Scholar 

  74. Li, C. Z., Bogozi, A., Huang, W. & Tao, N. J. Fabrication of stable metallic nanowires with quantized conductance. Nanotechnology 10, 221–223 (1999).

    Article  Google Scholar 

  75. Morpurgo, A. F., Marcus, C. M. & Robinson, D. B. Controlled fabrication of metallic electrodes with atomic separation. Appl. Phys. Lett. 14, 2082 (1999).

    Google Scholar 

  76. Lee, J. -O. et al. Absence of strong gate effects in electrical measurements on phenylene-based conjugated molecules. Nano Lett. 3, 113–117 (2003).

    Article  CAS  Google Scholar 

  77. Luber, S. M. et al. Nanometre spaced electrodes on a cleaved AlGaAs surface. Nanotechnology 16, 1182–1185 (2005).

    Article  CAS  Google Scholar 

  78. Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003).

    Article  CAS  Google Scholar 

  79. Ghosh, S. et al. Device structure for electronic transport through individual molecules using nanoelectrodes. Appl. Phys. Lett. 87, 233509 (2005).

    Article  CAS  Google Scholar 

  80. Champagne, A. R., Pasupathy, A. N. & Ralph, D. C. Mechanically adjustable and electrically gated single-molecule transistors. Nano Lett. 5, 305–308 (2005).

    Article  CAS  Google Scholar 

  81. Dadosh, T. et al. Measurement of the conductance of single conjugated molecules. Nature 436, 677–680 (2005).

    Article  CAS  Google Scholar 

  82. Chae, D. H. et al. Vibrational excitations in single trimetal-molecule transistors. Nano Lett. 6, 165–168 (2006).

    Article  CAS  Google Scholar 

  83. Haiss, W. et al. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 125, 15294–15295 (2003).

    Article  CAS  Google Scholar 

  84. Xu, B., Xiao, X., Yang, X., Zang, L. & Tao, N. Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc. 127, 2386–2387 (2005).

    Article  CAS  Google Scholar 

  85. Chen, F. et al. A molecular switch based on potential-induced changes of oxidation state. Nano Lett. 5, 503–506 (2005).

    Article  CAS  Google Scholar 

  86. Albrecht, T., Guckian, A., Ulstrup, J. & Vos, J. G. Transistor-like behavior of transition metal complexes. Nano Lett. 5, 1451–1455 (2005).

    Article  CAS  Google Scholar 

  87. Li, Z. et al. Two-dimensional assembly and local redox-activity of molecular hybrid structures in an electrochemical environment. Faraday Discuss. 131, 121–143 (2006).

    Article  CAS  Google Scholar 

  88. Tao, N. J. Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling mircoscopy. Phys. Rev. Lett. 76, 4066–4069 (1996).

    Article  CAS  Google Scholar 

  89. Gittins, D. I., Bethell, D., Schiffrin, D. J. & Nichols, R. J. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408, 67–69 (2000).

    Article  CAS  Google Scholar 

  90. Tran, E., Rampi, M. A. & Whitesides, G. M. Electron transfer in a Hg-SAM//SAM-Hg junction mediated by redox centers. Angew. Chem., Int. Edn 43, 3835–3839 (2004).

    Article  CAS  Google Scholar 

  91. Mujica, V., Nitzan, A., Datta, S., Ratner, M. A. & Kubiak, C. P. Molecular wire junctions: Tuning the conductance. J. Phys. Chem. B 107, 91–95 (2003).

    Article  CAS  Google Scholar 

  92. Kasibhatla, B. S. T. et al. Reversibly altering electronic conduction through a single molecule by a chemical binding event. J. Phys. Chem. B 107, 12378–12382 (2003).

    Article  CAS  Google Scholar 

  93. Piva, P. G. et al. Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658–661 (2005).

    Article  CAS  Google Scholar 

  94. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  CAS  Google Scholar 

  95. Troisi, A. & Ratner, M. A. Conformational molecular rectifiers. Nano Lett. 4, 591–595 (2004).

    Article  CAS  Google Scholar 

  96. Joachim, C. & Gimzewski, J. K. An electromechanical amplifier using a single molecule. Chem. Phys. Lett. 265, 353–357 (1997).

    Article  CAS  Google Scholar 

  97. Park, H. et al. Nanomechanical oscillations in a single-C-60 transistor. Nature 407, 57–60 (2000).

    Article  CAS  Google Scholar 

  98. Cao, J., Wang, Q. & Dai, H. Electromechanical Properties of Metallic, Quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 90, 157601 (2003).

    Article  CAS  Google Scholar 

  99. Minot, E. D. et al. Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003).

    Article  CAS  Google Scholar 

  100. Kaun, C. C. & Seideman, T. Current-driven oscillations and time-dependent transport in nanojunctions. Phys. Rev. Lett. 94, 226801 (2005).

    Article  CAS  Google Scholar 

  101. Brwone, W. R. & Feringa, B. Nature Nanotech. 1, 25–35 (2006).

    Article  CAS  Google Scholar 

  102. Dulic, D. et al. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003).

    Article  CAS  Google Scholar 

  103. He, J. et al. Switching of a photochromic molecule on gold electrodes: single-molecule measurements. Nanotechnology 16, 695–702 (2005).

    Article  CAS  Google Scholar 

  104. Li, J., Speyer, G. & Sankey, O. F. Conduction switching of photochromic molecules. Phys. Rev. Lett. 93, 248302 (2004).

    Article  CAS  Google Scholar 

  105. Moskalets, M. & Büttiker, M. Adiabatic quantum pump in the presence of external ac voltages. Phys. Rev. B 69, 205316 (2004).

    Article  CAS  Google Scholar 

  106. Galperin, M. & Nitzan, A. Current-induced light emission and light-induced current in molecular-tunneling junctions. Phys. Rev. Lett. 95, 206802 (2005).

    Article  CAS  Google Scholar 

  107. Lehmann, J., Camalet, S., Kohler, S. & Hänggi, P. Laser controlled molecular switches and transistors. Chem. Phys. Lett. 368, 282–288 (2003).

    Article  CAS  Google Scholar 

  108. Flaxer, E., Sneh, O. & Chesnovsky, O. Molecular light-emission induced by inelastic electron-tunneling. Science 262, 2012–2014 (1993).

    Article  CAS  Google Scholar 

  109. Berndt, R. et al. Photon-emission at molecular resolution induced by a scanning tunneling microscope. Science 262, 1425–1427 (1993).

    Article  CAS  Google Scholar 

  110. Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    Article  CAS  Google Scholar 

  111. Buker, J. & Kirczenow, G. Two-probe theory of scanning tunneling microscopy of single molecules: Zn(II)-etioporphyrin on alumina. Phys. Rev. B 72, 205338 (2005).

    Article  CAS  Google Scholar 

  112. Lee, T. H., Gonzalez, J. I., Zheng, J. & Dickson, R. M. Single-molecule optoelectronics. Acc. Chem. Res. 38, 534–541 (2005).

    Article  CAS  Google Scholar 

  113. Emberly, E. G. & Kirczenow, G. Molecular spintronics: spin-dependent electron transport in molecular wires. Chem. Phys. 281, 311–324 (2002).

    Article  CAS  Google Scholar 

  114. Pati, R., Senapati, L., Ajayan, P. M. & Nayak, S. K. First-principles calculations of spin-polarized electron transport in a molecular wire: Molecular spin valve. Phys. Rev. B 68, 100407 (2003).

    Article  CAS  Google Scholar 

  115. Rocha, A. R. et al. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).

    Article  CAS  Google Scholar 

  116. Waldron, D., Haney, P., Larade, B., MacDonald, A. & Guo, H. Nonlinear spin current and magnetoresistance of molecular tunnel junctions. Phys. Rev. Lett. 96, 166804 (2006).

    Article  CAS  Google Scholar 

  117. Ouyang, M. & Awschalom, D. D. Coherent spin transfer between molecularly bridged quantum dots. Science 301, 1074–1078 (2003).

    Article  CAS  Google Scholar 

  118. Xiong, Z. H., Wu, D., Vardeny, Z. V. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    Article  CAS  Google Scholar 

  119. Petta, J. R., Slater, S. K. & Ralph, D. C. Spin-dependent transport in molecular tunnel junctions. Phys. Rev. Lett. 93, 136601 (2004).

    Article  CAS  Google Scholar 

  120. Pasupathy, A. N. et al. The Kondo Effect in the Presence of Ferromagnetism. Science 306, 86–89 (2005).

    Article  CAS  Google Scholar 

  121. Boon, E. M., Ceres, D. M., Drummond, T. G., Hill, M. G. & J. K. Barton, J. K. Mutation detection by electrocatalysis at DNA-modified electrodes. Nature Biotechnol. 18, 1096–1100 (2000).

    Article  CAS  Google Scholar 

  122. Hihath, J., Xu, B., Zhang, P. & Tao, N. Study of single-nucleotide polymorphisms by means of electrical conductance measurements. Proc. Natl Acad. Sci. USA 102, 16979–16983 (2005).

    Article  CAS  Google Scholar 

  123. Porath, D., Cuniberti, G. & Di Felice, R. Charge transport in DNA-based devices. Top. Curr. Chem. 237, 183 (2004).

    Article  CAS  Google Scholar 

  124. Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  CAS  Google Scholar 

  125. Xue, Y. & Ratner, M. A. End group effect on electrical transport through individual molecules: A microscopic study. Phys. Rev. B 69, 085403 (2004).

    Article  CAS  Google Scholar 

  126. Basch, H., Cohen, R. & Ratner, M. A. Interface geometry and molecular junction conductance: Geometric fluctuation and stochastic switching. Nano Lett. 5, 1668–1675 (2005).

    Article  CAS  Google Scholar 

  127. Guo, X. F. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006).

    Article  CAS  Google Scholar 

  128. Stewart, M. P. et al. Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts. J. Am. Chem. Soc. 126, 370–378 (2004).

    Article  CAS  Google Scholar 

  129. McGuiness, C. L. et al. Molecular self-assembly at bare semiconductor surfaces: Preparation and characterization of highly organized octadecanethiolate monolayers on GaAs(001). J. Am. Chem. Soc. 128, 5231–5243 (2006).

    Article  CAS  Google Scholar 

  130. Tulevski, G. S., Myers, M. B., Hybertsen, M. S., Steigerwald, M. L. & Nuckolls, C. Formation of catalytic metal-molecule contacts. Science 309, 591–594 (2005).

    Article  CAS  Google Scholar 

  131. Li, X. L. et al. Controlling charge transport in single molecules using electrochemical gate. Faraday Discuss. 131, 111–120 (2006).

    Article  Google Scholar 

  132. Donhauser, Z. J. et al. Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001).

    Article  CAS  Google Scholar 

  133. Ramachandran, G. K. et al. A bond-fluctuation mechanism for stochastic switching in wired molecules. Science 300, 1413–1416 (2003).

    Article  CAS  Google Scholar 

  134. Wassel, R. A., Fuierer, R. R., Kim, N. & Gorman, C. B. Stochastic variation in conductance on the nanometer scale: A general phenomenon. Nano Lett. 3, 1617–1620 (2003).

    Article  CAS  Google Scholar 

  135. Ralls, K. S. et al. Discrete resistance switching in submicrometer silicon inversion layers: individual interface traps and low-frequency (1/f?) noise. Phys. Rev. Lett. 52, 228–231 (1984).

    Article  CAS  Google Scholar 

  136. Dutta, P. & Horn, P. M. Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 53, 497–516 (1981).

    Article  CAS  Google Scholar 

  137. He, H. X. et al. A conducting polymer nanojunction switch. J. Am. Chem. Soc. 123, 7730–7731 (2001).

    Article  CAS  Google Scholar 

  138. Chen, Y. -C., Zwolak, M. & Di Ventra, M. Local heating in nanoscale conductors. Nano Lett. 3, 1691 (2003).

    Article  CAS  Google Scholar 

  139. Huang, Z. F., Xu, B. Q., Chen, Y. C., Di Ventra, M. & Tao, N. J. Measurement of current-induced local heating in a single molecule junction. Nano Lett. 6, 1240–1244 (2006).

    Article  CAS  Google Scholar 

  140. Li, W. J. et al. Ballistic electron emission microscopy studies of Au/molecule/n-GaAs diodes. J. Phys. Chem. B 109, 6252–6256 (2005).

    Article  CAS  Google Scholar 

  141. Lefenfeldt, M. et al. Direct structural observation of a molecular junction by high-energy x-ray reflectometry. Proc. Natl Acad. Sci. USA 103, 2541–2545 (2006).

    Article  CAS  Google Scholar 

  142. Kushmerick, J. G. et al. Vibronic contributions to charge transport across molecular junctions. Nano Lett. 4, 639–642 (2004).

    Article  CAS  Google Scholar 

  143. Wang, W. Y., Lee, T., Kretzschmar, I. & Reed, M. A. Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett. 4, 643–646 (2004).

    Article  CAS  Google Scholar 

  144. McCreery, R. L. Analytical challenges in molecular electronics. Anal. Chem. 78, 3490–3497 (2006).

    Article  CAS  Google Scholar 

  145. Seideman, T. & Guo, H. Quantum transport and current-triggered dynamics in molecular tunnel junctions. J. Theor. Comp. Chem. 2, 439–458 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank Hong Guo, Fang Chen and Josh Hihath for critical reading of the manuscript and NSF, DOE, VW and DARPA for support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, N. Electron transport in molecular junctions. Nature Nanotech 1, 173–181 (2006). https://doi.org/10.1038/nnano.2006.130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing