Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type

Abstract

The development of nanomaterials for biomedical and biotechnological applications is an area of research that holds great promise and intense interest1, and carbon-based nanostructures in particular, such as carbon nanotubes (CNTs), are attracting an increasing level of attention2,3. One of the key advantages that CNTs offer is the possibility of effectively crossing biological barriers, which would allow their use in the delivery of therapeutically active molecules. Our laboratories have been investigating the use of CNTs in biomedical applications, and in particular as nanovectors for therapeutic agent delivery4,5,6,7,8. The interaction between cells and CNTs is a critical issue that will determine any future biological application of such structures. Here we show that various types of functionalized carbon nanotubes (f-CNTs) exhibit a capacity to be taken up by a wide range of cells and can intracellularly traffic through different cellular barriers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular structures of CNT covalently functionalized with different types of small molecules.
Figure 2: Structural characterization of f- CNTs.
Figure 3: Intracellular trafficking and perinuclear localization of SWNT–NH3+
Figure 4: Internalization under endocytosis-inhibiting conditions.

Similar content being viewed by others

References

  1. Martin, C. R. & Kohli, P. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2, 29–37 (2003).

    Article  CAS  Google Scholar 

  2. Bianco, A., Kostarelos, K., Partidos, C. D. & Prato, M. Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 571–577 (2005).

  3. Lin, Y. et al. Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 14, 527–541 (2004).

    Article  CAS  Google Scholar 

  4. Bianco, A., Kostarelos, K. & Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005).

    Article  CAS  Google Scholar 

  5. Pantarotto, D., Briand, J. P., Prato, M. & Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 16–17 (2004).

  6. Pantarotto, D. et al. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125, 6160–6164 (2003).

    Article  CAS  Google Scholar 

  7. Pantarotto, D. et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Edn 43, 5242–5246 (2004).

    Article  CAS  Google Scholar 

  8. Singh, R. et al. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127, 4388–4396 (2005).

    Article  CAS  Google Scholar 

  9. Cai, D. et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods 2, 449–454 (2005).

    Article  CAS  Google Scholar 

  10. Gao, L. Z. et al. Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem. 7, 239–242 (2006).

    Article  CAS  Google Scholar 

  11. Liu, Y. et al. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chem. Int. Edn 44, 4782–4785 (2005).

    Article  CAS  Google Scholar 

  12. Kam, N. W. S. & Dai, H. J. Carbon nanotubes as intracellular protein transporters: Generality and biological functionality. J. Am. Chem. Soc. 127, 6021–6026 (2005).

    Article  CAS  Google Scholar 

  13. Cherukuri, P., Bachilo, S., Litovsky, S. & Weisman, R. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126, 15638–15639 (2004).

    Article  CAS  Google Scholar 

  14. Heller, D., Baik, S., Eurell, T. & Strano, M. Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv. Mater. 17, 2793–2799 (2005).

    Article  CAS  Google Scholar 

  15. Sato, Y. et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. Biosyst. 1, 176–182 (2005).

    Article  CAS  Google Scholar 

  16. Kagan, V. E. et al. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol. Lett. 165, 88–100 (2006).

    Article  CAS  Google Scholar 

  17. Sayes, C. M. et al. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 161, 135–142 (2006).

    Article  CAS  Google Scholar 

  18. Kam, N. W. S., Liu, Z. & Dai, H. J. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 127, 12492–12493 (2005).

    Article  CAS  Google Scholar 

  19. Lu, Q. et al. RNA polymer translocation with single-walled carbon nanotubes. Nano Lett. 4, 2473–2477 (2004).

    Article  CAS  Google Scholar 

  20. Tsyboulski, D., Bachilo, S. & Weisman, R. Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy. Nano Lett. 5, 975–979 (2005).

    Article  CAS  Google Scholar 

  21. Kostarelos, K. & Miller, A. D. Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem. Soc. Rev. 34, 970–994 (2005).

    Article  CAS  Google Scholar 

  22. Georgakilas, V. et al. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760–761 (2002).

    Article  CAS  Google Scholar 

  23. Georgakilas, V. et al. Amino acid functionalisation of water soluble carbon nanotubes. Chem. Commun. 3050–3051 (2002).

  24. Wu, W. et al. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Edn 44, 6358–6362 (2005).

    Article  CAS  Google Scholar 

  25. Pastorin, G. et al. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun. 1182–1184 (2006).

  26. Riggs, J. E., Guo, Z. X., Carroll, D. L. & Sun, Y. P. Strong luminescence of solubilized carbon nanotubes. J. Am. Chem. Soc. 122, 5879–5880 (2000).

    Article  CAS  Google Scholar 

  27. Banerjee, S. & Wong, S. S. Structural characterization, optical properties, and improved solubility of carbon nanotubes functionalized with Wilkinson's catalyst. J. Am. Chem. Soc. 124, 8940–8948 (2002).

    Article  CAS  Google Scholar 

  28. Lin, Y. et al. Visible luminescence of carbon nanotubes and dependence on functionalization. J. Phys. Chem. B 109, 14779–14782 (2005).

    Article  CAS  Google Scholar 

  29. Guldi, D. M., Holzinger, M., Hirsch, A., Georgakilas, V. & Prato, M. First comparative emission assay of single-wall carbon nanotubes — solutions and dispersions. Chem. Commun. 1130–1131 (2003).

  30. Lacerda, L. et al. Luminescence of functionalised carbon nanotube as a tool to monitor bundle formation and dissociation in water: the effect of plasmid DNA complexation. Adv. Funct. Mater. 16, 1839–1846 (2006).

    Article  CAS  Google Scholar 

  31. Kam, N. W., Liu, Z. & Dai, H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Edn 45, 577–581 (2006).

    Article  CAS  Google Scholar 

  32. Lopez, C. F., Nielsen, S. O., Moore, P. B. & Klein, M. L. Understanding nature's design for a nanosyringe. Proc. Natl Acad. Sci. USA 101, 4431–4434 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the School of Pharmacy (University of London), CNRS, the "Agence National de la Recherche" (ANR-05-JCJC-0031-01) the NEURONANO program (NMP4-CT-2006-031847), University of Trieste and MUR (PRIN 2006, prot. 2006034372). S.G., W.W. and G.P. are grateful to CNRS and the French Ministry for Research and New Technologies for a post-doctoral fellowship (GenHomme Network 2003). L.L. wishes to thank the Portuguese Foundation for Science and Technology (FCT/MCTES) for a PhD fellowship (SFRH/BD/21845/2005). The authors wish to thank M. Benincasa and R. Gennaro for providing the fungal strains. Some of the confocal images were collected at the Microscopy Facility Platform located at the Institut de Biologie Moléculaire des Plantes (IBMP, Strasbourg, France).

Author information

Authors and Affiliations

Authors

Contributions

K.K., M.P. and A.B. conceived and designed the experiments. L.L., G.P., W.W., S.W., J.L., S.G. and D.P. performed the experiments. K.K., L.L., G.P., W.W., S.W., J.L., S.G., D.P., M.P. and A.B. analysed the data. K.K., M.P. and A.B. wrote the paper, and all the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Kostas Kostarelos, Maurizio Prato or Alberto Bianco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostarelos, K., Lacerda, L., Pastorin, G. et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotech 2, 108–113 (2007). https://doi.org/10.1038/nnano.2006.209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing