Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Donor deactivation in silicon nanostructures

Abstract

The operation of electronic devices relies on the density of free charge carriers available in the semiconductor; in most semiconductor devices this density is controlled by the addition of doping atoms. As dimensions are scaled down to achieve economic and performance benefits, the presence of interfaces and materials adjacent to the semiconductor will become more important and will eventually completely determine the electronic properties of the device. To sustain further improvements in performance, novel field-effect transistor architectures, such as FinFETs1,2 and nanowire field-effect transistors3,4,5,6,7, have been proposed as replacements for the planar devices used today, and also for applications in biosensing8,9,10 and power generation11. The successful operation of such devices will depend on our ability to precisely control the location and number of active impurity atoms in the host semiconductor during the fabrication process. Here, we demonstrate that the free carrier density in semiconductor nanowires is dependent on the size of the nanowires. By measuring the electrical conduction of doped silicon nanowires as a function of nanowire radius, temperature and dielectric surrounding, we show that the donor ionization energy increases with decreasing nanowire radius, and that it profoundly modifies the attainable free carrier density at values of the radius much larger than those at which quantum12,13 and dopant surface segregation14 effects set in. At a nanowire radius of 15 nm the carrier density is already 50% lower than in bulk silicon due to the dielectric mismatch15 between the conducting channel and its surroundings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of n-type silicon nanowires.
Figure 2: Effect of surface states.
Figure 3: Resistivity versus electronic radius.
Figure 4: Doping deactivation in silicon nanowires.

Similar content being viewed by others

References

  1. Hisamoto, D., Kaga, T. & Takeda, E. Impact of the vertical SOI ‘DELTA’ structure on planar device technology. IEEE Trans. Electron. Dev. 38, 1419–1424 (1991).

    Article  Google Scholar 

  2. Hisamoto, D. et al. A folded-channel MOSFET for deep-sub-tenth micron era. IEDM Tech. Dig. 1032–1034 (1998).

  3. Suk, D. S. et al. High performance 5 nm radius twin silicon nanowire MOSFET(TSNWFET): Fabrication on bulk Si wafer, characteristics and reliability. IEDM Tech. Dig. 717–720 (2005).

  4. Singh, N. et al. High-performance fully depleted silicon nanowire (diameter ≤5 nm) gate-all-around CMOS devices. IEEE Electron. Dev. Lett. 27, 383–386 (2006).

    Article  Google Scholar 

  5. Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

    Article  Google Scholar 

  6. Cohen, G. M. et al. Nanowire metal-oxide-semiconductor field effect transistor with doped epitaxial contacts for source and drain. Appl. Phys. Lett. 90, 233110 (2007).

    Article  Google Scholar 

  7. Thelander, C., Fröberg, L. E., Rehnstedt, C., Samuelson, L. & Wernersson, L.-E. Vertical enhancement-mode InAs nanowire field-effect transistor with 50 nm wrap gate. IEEE Electron. Dev. Lett. 29, 206–208 (2008).

    Article  Google Scholar 

  8. Cui, Y., Wei, Q., Park, P. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  Google Scholar 

  9. Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 23, 1294–1301 (2005).

    Article  Google Scholar 

  10. Stern, E. et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519–522 (2007).

    Article  Google Scholar 

  11. Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008).

    Article  Google Scholar 

  12. Bryant, G. W. Hydrogenic impurity states in quantum-well wires. Phys. Rev. B 29, 6632–6639 (1984).

    Article  Google Scholar 

  13. Khanal, D. R., Yim, J. W. L., Walukiewicz, W. & Wu, J. Effects of quantum confinement on the doping limit of semiconductor nanowires. Nano Lett. 7, 1186–1190 (2007).

    Article  Google Scholar 

  14. Fernandez-Serra, M. V., Adessi, Ch. & Blase, X. Surface segregation and backscattering in doped silicon nanowires. Phys. Rev. Lett. 96, 166805 (2006).

    Article  Google Scholar 

  15. Diarra, M., Niquet, Y.-M., Delerue, C. & Allan, G. Ionization energy of donor and acceptor impurities in semiconductor nanowires; importance of dielectric confinement. Phys. Rev. B. 75, 045301 (2007).

    Article  Google Scholar 

  16. Schechter, D. Shallow impurity surface states in silicon. Phys. Rev. Lett. 19, 692–693 (1967).

    Article  Google Scholar 

  17. Niquet, Y. M. et al. Electronic structure of semiconductor nanowires. Phys. Rev. B 73, 165319 (2006).

    Article  Google Scholar 

  18. Schmidt, V., Senz, S. & Gösele, U. Influence of the Si/SiO2 interface on the charge carrier density of Si nanowires. Appl. Phys. A. 86, 187–191 (2007).

    Article  Google Scholar 

  19. Cui, Y. et al. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001).

    Article  Google Scholar 

  20. Schmidt, V., Senz, S. & Gösele, U. Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 5, 931–935 (2005).

    Article  Google Scholar 

  21. Angermann, H., Dittrich, Th. & Flietner, H. Investigation of native-oxide growth on HF-treated Si(111) surfaces by measuring the surface-state distribution. Appl. Phys. A 59, 193–197 (1994).

    Article  Google Scholar 

  22. Okorn-Schmidt, H. F. Characterization of silicon surface preparation processes for advanced gate dielectrics. IBM J. Res. Develop. 43, 351–365 (1999).

    Article  Google Scholar 

  23. Jin, S., Fiscetti, M. V. & Tan, T.-V. Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening and band nonparabolicity J. Appl. Phys. 102, 083715 (2007).

    Article  Google Scholar 

  24. Ramayya, E. B., Vasileska, D., Goodnick, S. M. & Knezevic, I. Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008).

    Article  Google Scholar 

  25. Hiramoto, T., Saitoh, M. & Tsutsui, G. Emerging nanoscale silicon devices taking advantage of nanostructure physics. IBM J. Res. Develop. 50, 411–418 (2006).

    Article  Google Scholar 

  26. Schenk, A., Altermatt, P. P. & Schmithusen, B. Physical modeling of incomplete ionization for silicon device simulation. International Conference on Simulation of Semiconductor Processes and Devices, 51–54 (IEEE, 2006).

  27. Schmid, H. et al. Patterned epitaxial vapor–liquid–solid growth of silicon nanowires on Si(111) using silane. J. Appl. Phys. 103, 024304 (2007).

    Article  Google Scholar 

  28. Irvin, J. C. Resistivity of bulk silicon and of diffused layers in silicon. Bell Syst. Technol. J. 41, 387–391 (1962).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge fruitful discussions with P. Solomon, S. Karg, D. Webb and R. Stutz. This work was partially supported by the European Union (NODE 015783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael T. Björk.

Supplementary information

Supplementary Information

Supplementary Information (PDF 844 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björk, M., Schmid, H., Knoch, J. et al. Donor deactivation in silicon nanostructures. Nature Nanotech 4, 103–107 (2009). https://doi.org/10.1038/nnano.2008.400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing