Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors

Abstract

Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes1,2,3,4,5,6,7,8, but their energy storage density is too low for many important applications2,3. Pseudocapacitive transition-metal oxides such as MnO2 could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment9,10. However, the poor conductivity of MnO2 (10–5–10–6 S cm–1) limits the charge/discharge rate for high-power applications10,11. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO2 have enhanced conductivity, resulting in a specific capacitance of the constituent MnO2 (1,145 F g–1) that is close to the theoretical value9. The nanoporous gold allows electron transport through the MnO2, and facilitates fast ion diffusion between the MnO2 and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanoporous gold/MnO2-based supercapacitors.
Figure 2: Microstructure characterization.
Figure 3: Electrochemical performance.
Figure 4: Scan rate dependence of electrochemical properties

Similar content being viewed by others

References

  1. Winter, M. & Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004).

    Article  CAS  Google Scholar 

  2. Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer, 1999).

  3. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008).

    Article  CAS  Google Scholar 

  4. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  5. Miller, J. R. & Simon P. Electrochemical capacitors for energy management. Science 321, 651–652 (2008).

    Article  CAS  Google Scholar 

  6. Pech, D. et al. Ultrahigh-power micrometer-sized supercapacitors based on onion-like carbon. Nature Nanotech. 5, 651–654 (2010).

    Article  CAS  Google Scholar 

  7. Chmiola, J., Largeot, C., Taberna, P. L., Simon, P. & Gogotsi, Y. Monolithic Carbide-derived carbon films for micro-supercapacitors. Science 328, 480–483 (2010).

    Article  CAS  Google Scholar 

  8. Huang, J. S., Sumpter, B. G. & Meunier, V. Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47, 520–524 (2008).

    Article  CAS  Google Scholar 

  9. Toupin, M., Brousse, T. & Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004).

    Article  CAS  Google Scholar 

  10. Chang, J. K. & Tsai, W. T. Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors. J. Electrochem. Soc. 150, A1333–A1338 (2003).

    Article  CAS  Google Scholar 

  11. Bélanger, D., Brousse, T. & Long, J. W. Manganese oxides: battery materials make the leap to electrochemical capacitors. Electrochem. Soc. Interface 17, 49–52 (2008).

    Google Scholar 

  12. Conway, B. E., Birss, V. & Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 66, 1–14 (1997).

    Article  CAS  Google Scholar 

  13. Rudge, A., Davey, J., Raistrick, I., Gottesfeld, S. & Ferraris, J. P. Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47, 89–107 (1994).

    Article  CAS  Google Scholar 

  14. Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    Article  CAS  Google Scholar 

  15. Kaempgen, M., Chan, C. K., Ma, J., Cui, Y. & Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9, 1872–1876 (2009).

    Article  CAS  Google Scholar 

  16. Pushparaj, V. L. et al. Flexible energy storage devices based on nanocomposite paper. Proc. Natl Acad. Sci. USA 104, 13574–13577 (2007).

    Article  CAS  Google Scholar 

  17. Wu, M. Q., Snook, G. A., Chen, G. Z. & Fray, D. J. Redox deposition of manganese oxide on graphite for supercapacitors. Electrochem. Commun. 6, 499–504 (2004).

    Article  CAS  Google Scholar 

  18. Yan, J. et al. Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J. Power Sources 194, 1202–1207 (2009).

    Article  CAS  Google Scholar 

  19. Reddy, A. L. M., Shaijumon, M. M., Gowda, S. R. & Ajayan, P. M. Multisegmented Au–MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J. Phys. Chem. C 114, 658–663 (2010).

    Article  CAS  Google Scholar 

  20. Hu, L. B. et al. Stretchable, porous, and conductive energy textiles. Nano Lett. 10, 708–714 (2010).

    Article  CAS  Google Scholar 

  21. Lei, Y., Fournier, C., Pascal, J. L. & Favier, F. Mesoporous carbon–manganese oxide composite as negative electrode material for supercapacitors. Micropor. Mesopor. Mater. 110, 167–176 (2008).

    Article  CAS  Google Scholar 

  22. Zhou, R. F. et al. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes. Nanotechnology 21, 345701 (2010).

    Article  Google Scholar 

  23. Liu, R. & Lee, S. B. MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J. Am. Chem. Soc. 130, 2942–2943 (2008).

    Article  CAS  Google Scholar 

  24. Chen, L. et al. Synthesis and pseudocapactive studies of composite films of polyaniline and manganese oxide nanoparticles. J. Power Sources 195, 3742–3747 (2010).

    Article  CAS  Google Scholar 

  25. Nakayama, M., Kanaya, T. & Inoue, R. Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor. Electrochem. Commun. 9, 1154–1158 (2007).

    Article  CAS  Google Scholar 

  26. Bruce, P. G., Scrosati, B. & Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).

    Article  CAS  Google Scholar 

  27. Fujita, T. et al. Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields. Phys. Rev. Lett. 101, 166601 (2008).

    Article  CAS  Google Scholar 

  28. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001).

    Article  CAS  Google Scholar 

  29. Potapov, P. L., Jorissen, K. & Schryvers D. Effect of charge transfer on EELS integrated cross sections in Mn and Ti oxides. Phys. Rev. B 70, 045106 (2004).

    Article  Google Scholar 

  30. Zhou, Y. K., He, B. L., Zhang, F. B. & Li, H. L. Hydrous manganese oxide/carbon nanotube composite electrodes for electrochemical capacitors. J. Solid State Electrochem. 8, 482–487 (2004).

    Article  CAS  Google Scholar 

  31. Hou, Y., Cheng, Y. W., Hobson, T. & Liu J. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett. 10, 2727–2733 (2010).

    Article  CAS  Google Scholar 

  32. Lee, S. W., Kim, J., Chen, S., Hammond, P. T. & Shao-Horn, Y. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4, 3889–3896 (2010).

    Article  CAS  Google Scholar 

  33. Fischer, A. E., Saunders, M. P., Pettigrew, K. A., Rolison, D. R. & Long, J. W. Electroless deposition of nanoscale MnO2 on ultraporous carbon nanoarchitectures: correlation of evolving pore–solid structure and electrochemical performance. J. Electrochem. Soc. 155, A246–A252 (2008).

    Article  CAS  Google Scholar 

  34. Lee, S. W., Kim, B. S., Chen, S., Shao-Horn, Y. & Hammond, P. T. Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131, 671–679 (2009).

    Article  CAS  Google Scholar 

  35. Pang, S. C., Anderson, M. A. & Chapman, T. W. Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol–gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc. 147, 444–450 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Global COE for Materials Research and Education, the World Premier International (WPI) Research Center Initiative for Atoms, Molecules and Materials, and the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT). X.Y.L was supported by the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship programme (P07373).

Author information

Authors and Affiliations

Authors

Contributions

X.Y.L. and M.W.C. conceived and designed the experiments. X.Y.L. carried out the fabrication of materials and performed electrochemical characterization. A.H. and T.F. contributed to microstructural characterization. X.Y.L. and M.W.C. wrote the paper, and all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Mingwei Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, X., Hirata, A., Fujita, T. et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotech 6, 232–236 (2011). https://doi.org/10.1038/nnano.2011.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing