Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiscale photoacoustic microscopy and computed tomography

Photoacoustic tomography (PAT) is probably the fastest-growing area of biomedical imaging technology, owing to its capacity for high-resolution sensing of rich optical contrast in vivo at depths beyond the optical transport mean free path (1 mm in human skin). Existing high-resolution optical imaging technologies, such as confocal microscopy and two-photon microscopy, have had a fundamental impact on biomedicine but cannot reach the penetration depths of PAT. By utilizing low ultrasonic scattering, PAT indirectly improves tissue transparency up to 1000-fold and consequently enables deeply penetrating functional and molecular imaging at high spatial resolution. Furthermore, PAT promises in vivo imaging at multiple length-scales; it can image subcellular organelles to organs with the same contrast origin — an important application in multiscale systems biology research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiscale scanning photoacoustic imaging of small animals in vivo.
Figure 2: Non-invasive photoacoustic computed tomography of small animals.
Figure 3: In vivo photoacoustic computed tomography of the human breast acquired at 1064-nm laser wavelength.

References

  1. Oraevsky, A. A. & Karabutov, A. A. in Biomedical Photonics Handbook Vol. PM125 (ed. Vo-Dinh, T.) Ch. 34, 3401–3434 (CRC Press, 2003).

    Google Scholar 

  2. Xu, M. H. & Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006).

    ADS  Google Scholar 

  3. Wang, L. V. (ed.) Photoacoustic Imaging and Spectroscopy (CRC Press, 2009).

    Google Scholar 

  4. Wang, X. D. et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nature Biotechnol. 21, 803–806 (2003).

    Google Scholar 

  5. Siphanto, R. I. et al. Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis. Opt. Express 13, 89–95 (2005).

    ADS  Google Scholar 

  6. Laufer, J., Delpy, D., Elwell, C. & Beard, P. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration. Phys. Med. Biol. 52, 141–168 (2007).

    Google Scholar 

  7. Yang, S., Xing, D., Zhou, Q., Xiang, L. & Lao, Y. Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography. Med. Phys. 34, 3294–3301 (2007).

    Google Scholar 

  8. Li, L., Zemp, R. J., Lungu, G., Stoica, G. & Wang, L. V. Photoacoustic imaging of lacZ gene expression in vivo. J. Biomed. Opt. 12, 020504 (2007).

    ADS  Google Scholar 

  9. De La Zerda, A. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nature Nanotechnol. 3, 557–562 (2008).

    ADS  Google Scholar 

  10. Copland, J. A. et al. Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography. Mol. Imaging Biol. 6, 341–349 (2004).

    Google Scholar 

  11. Mallidi, S., Larson, T., Aaron, J., Sokolov, K. & Emelianov, S. Molecular specific optoacoustic imaging with plasmonic nanoparticles. Opt. Express 15, 6583–6588 (2007).

    ADS  Google Scholar 

  12. Razansky, D. & Ntziachristos, V. Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion. Med. Phys. 34, 4293–4301 (2007).

    Google Scholar 

  13. Li, M.-L. et al. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc. IEEE 96, 481–489 (2008).

    Google Scholar 

  14. Bell, A. G. On the production and reproduction of sound by light. Am. J. Sci. 20, 305–324 (1880).

    ADS  Google Scholar 

  15. Bowen, T. Radiation-induced thermoacoustic imaging. US patent 4,385,634 (1983).

  16. Oraevsky, A. A., Jacques, S. L. & Tittel, F. K. Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves. Proc. SPIE 1882, 86–101 (1993).

    ADS  Google Scholar 

  17. Oraevsky, A. A., Jacques, S. L., Esenaliev, R. O. & Tittel, F. K. Laser-based optoacoustic imaging in biological tissues. Proc. SPIE 2134A, 122–128 (1994).

    ADS  Google Scholar 

  18. Kruger, R. A. Photoacoustic ultrasound. Med. Phys. 21, 127–131 (1994).

    Google Scholar 

  19. Kruger, R. A. & Liu, P. Photoacoustic ultrasound: pulse production and detection in 0.5% liposyn. Med. Phys. 21, 1179–1184 (1994).

    Google Scholar 

  20. Oraevsky, A. A., Esenaliev, R. O., Jacques, S. L., Thomsen, S. L. & Tittel, F. K. Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers. Proc. SPIE 2389, 198–208 (1995).

    ADS  Google Scholar 

  21. Kruger, R. A., Liu, P., Fang, Y. R. & Appledorn, C. R. Photoacoustic ultrasound (PAUS) — reconstruction tomography. Med. Phys. 22, 1605–1609 (1995).

    Google Scholar 

  22. Ku, G. & Wang, L. V. Scanning thermoacoustic tomography in biological tissue. Med. Phys. 27, 1195–1202 (2000).

    Google Scholar 

  23. Yang, S. et al. Noninvasive monitoring of traumatic brain injury and post-traumatic rehabilitation with laser-induced photoacoustic imaging. Appl. Phys. Lett. 90, 243902 (2007).

    ADS  Google Scholar 

  24. Zhang, Q. et al. Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography. Phys. Med. Biol. 53, 1921–1931 (2008).

    Google Scholar 

  25. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS  Google Scholar 

  26. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    ADS  Google Scholar 

  27. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    ADS  Google Scholar 

  28. Wang, L. V. & Wu, H. Biomedical Optics: Principles and Imaging (Wiley, 2007).

    Google Scholar 

  29. Wang, L. V., Zhao, X., Sun, H. & Ku, G. Microwave-induced acoustic imaging of biological tissues. Rev. Sci. Instrum. 70, 3744–3748 (1999).

    ADS  Google Scholar 

  30. Kruger, R. A., Reinecke, D. R. & Kruger, G. A. Thermoacoustic computed tomography-technical considerations. Med. Phys. 26, 1832–1837 (1999).

    Google Scholar 

  31. Guo, Z., Li, L. & Wang, L. V. The speckle-free nature of photoacoustic tomography. Proc. SPIE 7177, 71772J (2009).

    ADS  Google Scholar 

  32. Zhang, H. F., Maslov, K., Stoica, G. & Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature Biotechnol. 24, 848–851 (2006).

    Google Scholar 

  33. Zhang, H. F., Maslov, K. & Wang, L. V. In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Nature Protoc. 2, 797–804 (2007).

    Google Scholar 

  34. Hoelen, C. G. A., de Mul, F. F. M., Pongers, R. & Dekker, A. Three-dimensional photoacoustic imaging of blood vessels in tissue. Opt. Lett. 23, 648–650 (1998).

    ADS  Google Scholar 

  35. Kostli, K. P. et al. Optoacoustic imaging using a three-dimensional reconstruction algorithm. IEEE J. Sel. Top. Quant. 7, 918–923 (2001).

    Google Scholar 

  36. Paltauf, G., Viator, J. A., Prahl, S. A. & Jacques, S. L. Iterative reconstruction algorithm for optoacoustic imaging. J. Acoust. Soc. Am. 112, 1536–1544 (2002).

    ADS  Google Scholar 

  37. Andreev, V. G., Karabutov, A. A. & Oraevsky, A. A. Detection of ultrawide-band ultrasound pulses in optoacoustic tomography. IEEE T. Ultrason. Ferr. 50, 1383–1390 (2003).

    Google Scholar 

  38. Finch, D., Patch, S. K. & Rakesh. Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal. 35, 1213–1240 (2003).

    MathSciNet  MATH  Google Scholar 

  39. Kostli, K. P. & Beard, P. C. Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response. Appl. Opt. 42, 1899–1908 (2003).

    ADS  Google Scholar 

  40. Haltmeier, M., Scherzer, O., Burgholzer, P. & Paltauf, G. Thermoacoustic computed tomography with large planar receivers. Inverse Probl. 20, 1663–1673 (2004).

    ADS  MathSciNet  MATH  Google Scholar 

  41. Xu, M. & Wang, L. V. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71, 016706 (2005).

    ADS  Google Scholar 

  42. Cox, B. T. & Beard, P. C. Fast calculation of pulsed photoacoustic fields in fluids using k-space methods. J. Acoust. Soc. Am. 117, 3616–3627 (2005).

    ADS  Google Scholar 

  43. Cox, B. T., Arridge, S. R., Köstli, K. P. & Beard, P. C. Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method. Appl. Opt. 45, 1866–1875 (2006).

    ADS  Google Scholar 

  44. Anastasio, M. A., Zhang, J., Modgil, D. & La Rivière, P. J. Application of inverse source concepts to photoacoustic tomography. Inverse Probl. 23, S21–S35 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  45. Hoelen, C. G. A. & de Mul, F. F. M. Image reconstruction for photoacoustic scanning of tissue structures. Appl. Opt. 39, 5872–5883 (2000).

    ADS  Google Scholar 

  46. Köstli, K. P., Frenz, M., Bebie, H. & Weber, H. P. Temporal backward projection of optoacoustic pressure transients using Fourier transform methods. Phys. Med. Biol. 46, 1863–1872 (2001).

    Google Scholar 

  47. Larina, I. V., Larin, K. V. & Esenaliev, R. O. Real-time optoacoustic monitoring of temperature in tissues. J. Phys. D Appl. Phys. 38, 2633–2639 (2005).

    ADS  Google Scholar 

  48. Sethuraman, S., Aglyamov, S. R., Smalling, R. W. & Emelianov, S. Y. Remote temperature estimation in intravascular photoacoustic imaging. Ultrasound Med. Biol. 34, 299–308 (2008).

    Google Scholar 

  49. Shah, J. et al. Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J. Biomed. Opt. 13, 034024 (2008).

    ADS  Google Scholar 

  50. Song, K. H., Stein, E. W., Margenthaler, J. A. & Wang, L. V. Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model. J. Biomed. Opt. 13, 054033 (2008).

    ADS  Google Scholar 

  51. Maslov, K., Zhang, H. F., Hu, S. & Wang, L. V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 33, 929–931 (2008).

    ADS  Google Scholar 

  52. Savateeva, E. V. et al. Noninvasive detection and staging of oral cancer in vivo with confocal optoacoustic tomography. Proc. SPIE 3916, 55–66 (2000).

    ADS  Google Scholar 

  53. Galanzha, E. I., Shashkov, E. V., Tuchin, V. V. & Zharov, V. P. In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes. Cytom. Part A 73A, 884–894 (2008).

    Google Scholar 

  54. Olszewski, W. L. & Tárnok, A. Photoacoustic listening of cells in lymphatics: Research art or novel clinical noninvasive lymph test. Cytom. Part A 73A, 1111–1113 (2008).

    Google Scholar 

  55. Zharov, V. P., Galanzha, E. I., Shashkov, E. V., Khlebtsov, N. G. & Tuchin, V. V. In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents. Opt. Lett. 31, 3623–3625 (2006).

    ADS  Google Scholar 

  56. Weight, R. M., Viator, J. A., Dale, P. S., Caldwell, C. W. & Lisle, A. E. Photoacoustic detection of metastatic melanoma cells in the human circulatory system. Opt. Lett. 31, 2998–3000 (2006).

    ADS  Google Scholar 

  57. Zharov, V. P. et al. Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. J. Biomed. Opt. 12, 051503 (2007).

    ADS  Google Scholar 

  58. Holan, S. H. & Viator, J. A. Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction. Phys. Med. Biol. 53, N227–N236 (2008).

    ADS  Google Scholar 

  59. Ambartsoumian, G. & Kuchment, P. On the injectivity of the circular Radon transform. Inverse Probl. 21, 473–485 (2005).

    ADS  MathSciNet  MATH  Google Scholar 

  60. Haltmeier, M., Scherzer, O., Burgholzer, P., Nuster, R. & Paltauf, G. Thermoacoustic tomography and the circular Radon transform: Exact inversion formula. Math. Mod. Meth. Appl. Sci. 17, 635–655 (2007).

    MathSciNet  MATH  Google Scholar 

  61. Gamelin, J. et al. Curved array photoacoustic tomographic system for small animal imaging. J. Biomed. Opt. 13, 024007 (2008).

    ADS  Google Scholar 

  62. Hamilton, J. D. & O'Donnell, M. High frequency ultrasound imaging with optical arrays. IEEE T. Ultrason. Ferr. 45, 216–235 (1998).

    Google Scholar 

  63. Payne, B. P., Venugopalan, V., Mikić, B. B. & Nishioka, N. S. Optoacoustic tomography using time-resolved interferometric detection of surface displacement. J. Biomed. Opt. 8, 273–280 (2003).

    ADS  Google Scholar 

  64. Carp, S. A., Guerra, A., Duque, S. Q. & Venugopalan, V. Optoacoustic imaging using interferometric measurement of surface displacement. Appl. Phys. Lett. 85, 5772–5774 (2004).

    ADS  Google Scholar 

  65. Carp, S. A. & Venugopalan, V. Optoacoustic imaging based on the interferometric measurement of surface displacement. J. Biomed. Opt. 12, 064001 (2007).

    ADS  Google Scholar 

  66. Beard, P. C., Perennes, F. & Mills, T. N. Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection. IEEE T. Ultrason. Ferr. 46, 1575–1582 (1999).

    Google Scholar 

  67. Zhang, E., Laufer, J. & Beard, P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 47, 561–577 (2008).

    ADS  Google Scholar 

  68. Laufer, J., Zhang, E., Raivich, G. & Beard, P. Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner. Appl. Opt. 48, D299–D306 (2009).

    ADS  Google Scholar 

  69. Zhang, E. Z., Laufer, J. G., Pedley, R. B. & Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol. 54, 1035–1046 (2009).

    Google Scholar 

  70. Kruger, R. A., Kiser, W. L., Reinecke, D. R., Kruger, G. A. & Miller, K. D. Thermoacoustic molecular imaging of small animals. Mol. Imaging 2, 113–123 (2003).

    Google Scholar 

  71. Brecht, H.-P. et al. Optoacoustic 3D whole-body tomography: experiments in nude mice. Proc. SPIE 7177, 71770E (2009).

    Google Scholar 

  72. Kruger, R. A., Kiser, W. L., Reinecke, D. R. & Kruger, G. A. Thermoacoustic computed tomography using a conventional linear transducer array. Med. Phys. 30, 856–860 (2003).

    Google Scholar 

  73. Zeng, Y., Xing, D., Wang, Y., Yin, B. & Chen, Q. Photoacoustic and ultrasonic coimage with a linear transducer array. Opt. Lett. 29, 1760–1762 (2004).

    ADS  Google Scholar 

  74. Yin, B. et al. Fast photoacoustic imaging system based on 320-element linear transducer array. Phys. Med. Biol. 49, 1339–1346 (2004).

    Google Scholar 

  75. Niederhauser, J. J., Jaeger, M., Lemor, R., Weber, P. & Frenz, M. Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE T. Med. Imaging 24, 436–440 (2005).

    Google Scholar 

  76. Yang, D. W., Xing, D., Yang, S. H. & Xiang, L. Z. Fast full-view photoacoustic imaging by combined scanning with a linear transducer array. Opt. Express 15, 15566–15575 (2007).

    ADS  Google Scholar 

  77. Nie, L., Xing, D., Yang, D., Zeng, L. & Zhou, Q. Detection of foreign body using fast thermoacoustic tomography with a multielement linear transducer array. Appl. Phys. Lett. 90, 174109 (2007).

    ADS  Google Scholar 

  78. Burgholzer, P., Hofer, C., Paltauf, G., Haltmeier, M. & Scherzer, O. Thermoacoustic tomography with integrating area and line detectors. IEEE T. Ultrason. Ferr. 52, 1577–1583 (2005).

    Google Scholar 

  79. Burgholzer, P., Bauer-Marschallinger, J., Grün, H., Haltmeier, M. & Paltauf, G. Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors. Inverse Probl. 23, S65–S80 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  80. Paltauf, G., Nuster, R., Haltmeier, M. & Burgholzer, P. Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors. Inverse Probl. 23, S81–S94 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  81. Ermilov, S. A. et al. Laser optoacoustic imaging system for detection of breast cancer. J. Biomed. Opt. 14, 024007 (2009).

    ADS  Google Scholar 

  82. Manohar, S. et al. Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt. Express 15, 12277–12285 (2007).

    ADS  Google Scholar 

  83. Manohar, S., Kharine, A., van Hespen, J. C. G., Steenbergen, W. & van Leeuwen, T. G. The Twente Photoacoustic Mammoscope: system overview and performance. Phys. Med. Biol. 50, 2543–2557 (2005).

    Google Scholar 

  84. Wang, Y. et al. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 4, 1689–1692 (2004).

    ADS  Google Scholar 

  85. Li, P.-C. et al. Photoacoustic flow measurements by use of laser-induced shape transitions of gold nanorods. Opt. Lett. 30, 3341–3343 (2005).

    ADS  Google Scholar 

  86. Eghtedari, M. et al. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 7, 1914–1918 (2007).

    ADS  Google Scholar 

  87. Agarwal, A. et al. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 102, 064701 (2007).

    ADS  Google Scholar 

  88. Kim, K. et al. Photoacoustic imaging of early inflammatory response using gold nanorods. Appl. Phys. Lett. 90, 223901 (2007).

    ADS  Google Scholar 

  89. Chamberland, D. L. et al. Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent — an ex vivo preliminary rat study. Nanotechnology 19, 095101 (2008).

    ADS  Google Scholar 

  90. Yang, X., Skrabalak, S. E., Li, Z.-Y., Xia, Y. & Wang, L. V. Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent. Nano Lett. 7, 3798–3802 (2007).

    ADS  Google Scholar 

  91. Kim, G. et al. Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging. J. Biomed. Opt. 12, 044020 (2007).

    ADS  Google Scholar 

  92. Hu, M. et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006).

    Google Scholar 

  93. Li, P.-C. et al. Photoacoustic imaging of multiple targets using gold nanorods. IEEE T. Ultrason. Ferr. 54, 1642–1647 (2007).

    Google Scholar 

  94. Wang, X. et al. Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt. Lett. 29, 730–732 (2004).

    ADS  Google Scholar 

  95. Razansky, D., Baeten, J. & Ntziachristos, V. Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT). Med. Phys. 36, 939–945 (2009).

    Google Scholar 

  96. Razansky, D., Vinegoni, C. & Ntziachristos, V. Multispectral photoacoustic imaging of fluorochromes in small animals. Opt. Lett. 32, 2891–2893 (2007).

    ADS  Google Scholar 

  97. Ntziachristos, V., Ripoll, J., Wang, L. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnol. 23, 313–320 (2005).

    Google Scholar 

  98. Phelps, M. E. PET: A biological imaging technique. Neurochem. Res. 16, 929–940 (1991).

    Google Scholar 

  99. MacLaren, D. C. et al. PET imaging of transgene expression. Biol. Psychiat. 48, 337–348 (2000).

    Google Scholar 

  100. Esenaliev, R. O., Karabutov, A. A. & Oraevsky, A. A. Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE J. Sel. Top. Quant. 5, 981–988 (1999).

    Google Scholar 

  101. Ku, G. & Wang, L. V. Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt. Lett. 30, 507–509 (2005).

    ADS  Google Scholar 

  102. Xu, Y. & Wang, L. V. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography. IEEE T. Ultrason. Ferr. 53, 542–548 (2006).

    Google Scholar 

  103. Yang, X. & Wang, L. V. Monkey brain cortex imaging by photoacoustic tomography. J. Biomed. Opt. 13, 044009 (2008).

    ADS  Google Scholar 

  104. http://www.isiknowledge.com

  105. Sethuraman, S., Amirian, J. H., Litovsky, S. H., Smalling, R. W. & Emelianov, S. Y. Ex vivo characterization of atherosclerosis using intravascular photoacoustic imaging. Opt. Express 15, 16657–16666 (2007).

    ADS  Google Scholar 

  106. Sethuraman, S., Aglyamov, S. R., Amirian, J. H., Smalling, R. W. & Emelianov, S. Y. Intravascular photoacoustic imaging using an IVUS imaging catheter. IEEE T. Ultrason. Ferr. 54, 978–986 (2007).

    Google Scholar 

  107. Sethuraman, S., Amirian, J. H., Litovsky, S. H., Smalling, R. W. & Emelianov, S. Y. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques. Opt. Express 16, 3362–3367 (2008).

    ADS  Google Scholar 

  108. Oraevsky, A. A. et al. Initial clinical evaluation of laser optoacoustic imaging system for diagnostic imaging of breast cancer. Breast Cancer Res. Tr. 106, S47 (2007).

    Google Scholar 

  109. Manohar, S., Kharine, A., van Hespen, J. C. G., Steenbergen, W. & van Leeuwen, T. G. Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms. J. Biomed. Opt. 9, 1172–1181 (2004).

    ADS  Google Scholar 

  110. Kruger, R. A. et al. Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz — feasibility study. Radiology 216, 279–283 (2000).

    Google Scholar 

Download references

Acknowledgements

The author acknowledges the support by the National Institutes of Health Grants R01 EB000712, R01 NS046214, R01 EB008085 and U54 CA136398. Thanks to Song Hu for providing Fig. 1d.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author has a competing financial interest in Microphotoacoustics, Inc. and Endra, Inc., which however did not support this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L. Multiscale photoacoustic microscopy and computed tomography. Nature Photon 3, 503–509 (2009). https://doi.org/10.1038/nphoton.2009.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing