Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vacuum Rabi splitting in semiconductors

Abstract

The recent development of techniques to produce optical semiconductor cavities of very high quality has prepared the stage for observing cavity quantum-electrodynamic effects in solid-state materials. Among the most promising systems for these studies are semiconductor quantum dots inside photonic crystal, micropillar or microdisk resonators. We review the progress so far in obtaining true quantum-optical strong-coupling effects in semiconductors. We discuss the recent results on vacuum Rabi splitting with a single quantum dot, emphasizing the differences from quantum-well systems. Finally, we propose nonlinear tests for the true quantum limit and speculate about applications in quantum information devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vacuum Rabi splitting using an atom or dot in a small-volume cavity.
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Berman, P. R. (ed.) Cavity Quantum Electrodynamics (Academic, Boston, 1994).

  2. Haroche, S. & Kleppner, D. Cavity quantum electrodynamics. Phys. Today 24–30 (January, 1989).

  3. McKeever, J., Boca, A., D. Boozer, A., Buck, J. R. & Kimble, H. J. Experimental realization of a one-atom laser in the regime of strong coupling. Nature 425, 268–271 (2003).

    Article  ADS  Google Scholar 

  4. Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Phys. Scripta 76, 127–137 (1998).

    Article  Google Scholar 

  5. Hood, C. J., Chapman, M. S., Lynn, T. W. & Kimble, H. J. Real-time cavity QED with single atoms. Phys. Rev. Lett. 80, 4157–4160 (1998).

    Article  ADS  Google Scholar 

  6. Ye, J., Vernooy, D. W. & Kimble, H. J. Trapping of single atoms in cavity QED. Phys. Rev. Lett. 83, 4987–4990 (1999).

    Article  ADS  Google Scholar 

  7. Nogues, G. et al. Seeing a single photon without destroying it. Nature 400, 239–242 (1999).

    Article  ADS  Google Scholar 

  8. Haroche, S. Entanglement, decoherence and the quantum/classical boundary. Phys. Today 36–42 (July, 1998).

  9. Bertet, P. et al. A complementarity experiment with an interferometer at the quantum-classical boundary. Nature 411, 166–170 (2001).

    Article  ADS  Google Scholar 

  10. Raimond, J. M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  12. Marzin, J.-Y., Gérard, J.-M., Izraël, A., Barrier, D. & Bastard, G. Photoliminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (1994).

    Article  ADS  Google Scholar 

  13. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 273, 87–90 (1996).

    Article  ADS  Google Scholar 

  14. Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    Article  ADS  Google Scholar 

  15. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681–681 (1946).

    Article  Google Scholar 

  16. Gérard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

    Article  ADS  Google Scholar 

  17. Bayer, M. et al. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Phys. Rev. Lett. 86, 3168–3171 (2001).

    Article  ADS  Google Scholar 

  18. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992).

    Article  ADS  Google Scholar 

  19. Bernardot, F., Nussenzvieg, P., Brune, M., Raimond, J. M. & Haroche, S. Vacuum Rabi splitting on a microscopic atomic sample in a microwave cavity. Europhys. Lett. 17, 33–38 (1992).

    Article  ADS  Google Scholar 

  20. Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to beam maser. Proc. IEEE 51, 89–109 (1963).

    Article  Google Scholar 

  21. Carmichael, H. J., Brecha, R. J., Raizen, M. G., Kimble, J. & Rice, P. R. Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators. Phys. Rev. A 40, 5516–5519 (1989).

    Article  ADS  Google Scholar 

  22. Andreani, L. C., Panzarini, G. & Gérard, J. M. Strong-coupling regime for quantum boxes in pillar microcavities: Theory. Phys. Rev. B 60, 13276–13279 (1999).

    Article  ADS  Google Scholar 

  23. Goldstein, E. & Meystre, P. in Spontaneous Emission and Laser Oscillations in Microcavities (eds Yokoyama, H. & Ujihara, K.) 1–46 (CRC, New York, 1995).

    Google Scholar 

  24. Gibbs, H. M. in Optics of Semiconductors and Their Nanostructures (eds Kalt, H. & Hetterich, M.) 189–208 (Springer, Berlin, 2004).

    Book  Google Scholar 

  25. Prineas, J. P. et al. Exciton-polariton eigenmodes in light-coupled In0.04Ga0.96As/GaAs semiconductor multiple quantum well periodic structures. Phys. Rev. B 61, 13863–13872 (1994).

    Article  ADS  Google Scholar 

  26. Boca, A. et al. Observation of the vacuum Rabi spectrum for one trapped atom. Phys. Rev. Lett. 93, 233603 (2004).

    Article  ADS  Google Scholar 

  27. Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  28. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  29. Peter, E. et al. Exciton photon strong-coupling regime for a single quantum dot in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).

    Article  ADS  Google Scholar 

  30. Zhu, Y. et al. Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations. Phys. Rev. Lett. 64, 2499–2502 (1990).

    Article  ADS  Google Scholar 

  31. Khitrova, G. in Quantum Optoelectronics, Postconference Edition of Technical Digest 77–78 (Optical Society of America, Washington, 1999).

    Google Scholar 

  32. Khitrova, G., Gibbs, H. M., Jahnke, F., Kira, M. & Koch, S. W. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 71, 1591–1639 (1999).

    Article  ADS  Google Scholar 

  33. Ell, C. et al. Toward quantum entanglement in a quantum-dot nanocavity. IEEE LEOS Newslett. 13, 8–9 (1999).

    Google Scholar 

  34. Andreani, L. C., Panzarini, G. & Gérard, J. M. Vacuum-field Rabi splitting for quantum boxes in pillar microcavities. Phys. Stat. Solidi A 178, 145–148 (2000).

    Article  ADS  Google Scholar 

  35. Vuc˘ković, J. & Yamamoto, Y. Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot. Appl. Phys. Lett. 82, 2374–2376 (2003).

    Article  ADS  Google Scholar 

  36. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  37. Lefevre-Seguin, V. & Haroche, S. Towards cavity-QED experiments with silica microspheres. Mater. Sci. Eng. B 48, 53–58 (1997).

    Article  Google Scholar 

  38. Fan, X., Palinginis, P., Lacey, S., Wang, H. & Lonergan, M. Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high Q factors. Opt. Lett. 25, 1600–1602 (2000).

    Article  ADS  Google Scholar 

  39. Raymer, M. G. et al. in Frontiers in Optics/Laser Science XIX WGG5 (Optical Society of America, Washington, 2003).

    Google Scholar 

  40. Cui, G. et al. A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies. Preprint at <http://arxiv.org/abs/quant-ph/0601046> (2006).

  41. Stanley, R. P., Houdré, R., Oesterle, U., Gailhanou, M. & Ilegems, M. Ultrahigh finesse microcavity with distributed Bragg reflectors. Appl. Phys. Lett. 65, 1883–1885 (1994).

    Article  ADS  Google Scholar 

  42. Gérard, J. M. et al. Quantum boxes as active probes for photonic microstructures: The pillar microcavity case. Appl. Phys. Lett. 69, 449–451 (1996).

    Article  ADS  Google Scholar 

  43. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. & Logan, R. A. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992).

    Article  ADS  Google Scholar 

  44. Srinivasan, K. et al. Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots. Appl. Phys. Lett. 86, 151106 (2005).

    Article  ADS  Google Scholar 

  45. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  46. Yoshie, T. O., Shchekin, B., Chen, H., Deppe, D. G. & Scherer, A. Quantum dot photonic crystal lasers. Electron. Lett. 38, 967–968 (2002).

    Article  Google Scholar 

  47. Akahane, Y., Asano, T., Song, B.-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  ADS  Google Scholar 

  48. Song, B.-S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005);ibid in First Conf. Advances in Optical Materials abstract IS17 (Elsevier, Oxford, 2005).

    Article  ADS  Google Scholar 

  49. Hendrickson, J. et al. Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing. Phys. Rev. B 72, 193303 (2005).

    Article  ADS  Google Scholar 

  50. Ekimov, A. I. & Onushchenko, A. A. Quantum size effect in three dimensional microscopic semiconductor crystals. JETP Lett. 34, 345 (1981).

    ADS  Google Scholar 

  51. Efros, Al. L. & Efros, A. L. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 16, 772 (1982).

    Google Scholar 

  52. Zrenner, A. et al. Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures. Phys. Rev. Lett. 72, 3382–3385 (1994).

    Article  ADS  Google Scholar 

  53. Brunner, K., Abstreiter, G., Böhm, G., Tränkle, G. & Weimann, G. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys. Rev. Lett. 73, 1138–1141 (1994).

    Article  ADS  Google Scholar 

  54. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996).

    Article  ADS  Google Scholar 

  55. von Freymann, G. et al. Level repulsion in nano-photoluminescence spectra from single GaAs quantum wells? Phys. Rev. B 65, 205327 (2002).

    Article  ADS  Google Scholar 

  56. Leonard, D. et al. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl. Phys. Lett. 63, 3203–3204 (1993).

    Article  ADS  Google Scholar 

  57. Moison, J. M. et al. Self-organized growth of regular nanometer-scale InAs dots on GaAs. Appl. Phys. Lett. 64, 196–198 (1994).

    Article  ADS  Google Scholar 

  58. Petroff, P. M., Lorke, A. & Imamoglu, A. Epitaxially self-assembled quantum dots. Phys. Today 46–52 (May, 2001).

  59. Bányai, L. & Koch, S. W. Semiconductor Quantum Dots (World Scientific, Singapore, 1993).

    Book  Google Scholar 

  60. Zrenner, A. A close look on single quantum dots. J. Chem. Phys. 112, 7790–7798 (2000).

    Article  ADS  Google Scholar 

  61. Kammerer, C. et al. Line narrowing in single semiconductor quantum dots: Toward the control of environment effects. Phys. Rev. B 66, 041306 (2002).

    Article  ADS  Google Scholar 

  62. Birkedal, D., Leosson, K. & Hvam, J. M. Long coherence times in self-assembled semiconductor quantum dots. Superlattice Microstruct. (special issue) 31, 97–105 (2002).

    Article  ADS  Google Scholar 

  63. Bayer, M. & Forchel, A. Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots. Phys. Rev. B 65, 041308 (2002).

    Article  ADS  Google Scholar 

  64. Thränhardt, A., Ell, C., Khitrova, G. & Gibbs, H. M. Relation between dipole moment and radiative lifetime in interface fluctuation quantum dots. Phys. Rev. B 65, 035327 (2002).

    Article  ADS  Google Scholar 

  65. Stievater, T. H. et al. Rabi oscillations of excitons in single quantum dots. Phys. Rev. Lett. 87, 133603 (2001).

    Article  ADS  Google Scholar 

  66. Guest, J. R. et al. Measurement of optical absorption by a single quantum dot exciton. Phys. Rev. B 65, 241310 (2002).

    Article  ADS  Google Scholar 

  67. Becher, C. et al. Nonclassical radiation from a single self-assembled InAs quantum dot. Phys. Rev. B 63, 121312 (2001).

    Article  ADS  Google Scholar 

  68. Hours, J. et al. Single photon emission from individual GaAs quantum dots. Appl. Phys. Lett. 82, 2206–2208 (2003).

    Article  ADS  Google Scholar 

  69. Kiraz, A. et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure. Appl. Phys. Lett. 78, 3932–3934 (2001).

    Article  ADS  Google Scholar 

  70. Moreau, E. et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl. Phys. Lett. 79, 2865–2867 (2001).

    Article  ADS  Google Scholar 

  71. Pelton, M. et al. Efficient source of single photons: A single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

    Article  ADS  Google Scholar 

  72. Vuc˘ković, J, Fattal, D., Santori, C., Solomon, G. S. & Yamamoto, Y. Enhanced single-photon emission from a quantum dot in a micropost microcavity. Appl. Phys. Lett. 82, 3596–3598 (2003).

    Article  ADS  Google Scholar 

  73. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    Article  ADS  Google Scholar 

  74. Scherer, A. et al. Photonic crystal nanocavities for efficient light confinement and emission. J. Kor. Phys. Soc. 42, 768–773 (2003).

    Google Scholar 

  75. Gibbs, H. M. Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

    Google Scholar 

  76. Jewell, J. L., Lee, Y. H., McCall, S. L., Harbison, J. P. & Florez, L. T. High-finesse (Al,Ga)As interference filters grown by molecular beam epitaxy. Appl. Phys. Lett. 53, 640–642 (1988).

    Article  ADS  Google Scholar 

  77. Jewell, J. L., Harbison, J. P. & Scherer, A. Microlasers. Sci. Am. 86–94 (November, 1991).

  78. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  79. Jahnke, F. et al. Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime. Phys. Rev. Lett. 77, 5257–5260 (1996).

    Article  ADS  Google Scholar 

  80. Haroche, S. in New Trends in Atomic Physics (eds Grynberg, G. & Stora, R.) 193–309 (Elsevier, Oxford, 1984).

    Google Scholar 

  81. Kaluzny, Y., Goy, P., Gross, M., Raimond, J. M. & Haroche, S. Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance. Phys. Rev. Lett. 51, 1175–1178 (1983).

    Article  ADS  Google Scholar 

  82. Carmichael, H. J., Tian, L., Ren, W. & Alsing, P. in Cavity Quantum Electrodynamics (ed. Berman, P. R.) 381–423 (Academic, Boston, 1994).

    Google Scholar 

  83. Kimble, H. J. in Cavity Quantum Electrodynamics (ed. Berman, P. R.) 203–266 (Academic, San Diego, 1994).

    Google Scholar 

  84. Lee, E. S. et al. Saturation of normal-mode coupling in aluminum-oxide-aperture semiconductor nanocavities. J. Appl. Phys. 89, 807–809 (2003).

    Article  ADS  Google Scholar 

  85. Houdré, R. et al. Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments. Phys. Rev. Lett. 73, 2043–2046 (1994).

    Article  ADS  Google Scholar 

  86. Kira, M., Jahnke, F. & Koch, S. W. Microscopic theory of excitonic signatures in semiconductor photoluminescence. Phys. Rev. Lett. 81, 3263–3266 (1998).

    Article  ADS  Google Scholar 

  87. Kira, M., Hoyer, W., Stroucken, T. & Koch, S. W. Exciton formation in semiconductors and the influence of a photonic environment. Phys. Rev. Lett. 87, 176401 (2001).

    Article  ADS  Google Scholar 

  88. Hoyer, W., Kira, M. & Koch, S. W. Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures. Phys. Rev. B 67, 155113 (2003).

    Article  ADS  Google Scholar 

  89. Chatterjee, S. et al. Excitonic photoluminescence in semiconductor quantum wells: Plasma versus excitons. Phys. Rev. Lett. 92, 067402 (2004).

    Article  ADS  Google Scholar 

  90. Koch, S. W., Meier, T., Hoyer, W. & Kira, M. Theory of the optical properties of semiconductor nanostructures. Physica E 14, 45–52 (2002).

    Article  ADS  Google Scholar 

  91. Hoyer, W. et al. Many-body dynamics and exciton formation studied by time-resolved photoluminescence. Phys. Rev. B 72, 075324 (2005).

    Article  ADS  Google Scholar 

  92. Szczytko, J. et al. Determination of the exciton formation in quantum wells from time-resolved interband luminescence. Phys. Rev. Lett. 93, 137401 (2004).

    Article  ADS  Google Scholar 

  93. Kira, M. et al. Quantum theory of nonlinear semiconductor microcavity luminescence explaining “boser” experiments. Phys. Rev. Lett. 79, 5170–5173 (1997).

    Article  ADS  Google Scholar 

  94. Pau, S. et al. Observation of a laserlike transition in a microcavity exciton polariton system. Phys. Rev. B 54, R1789–R1792 (1996).

    Article  ADS  Google Scholar 

  95. Cao, H. et al. Transition from a microcavity exciton polariton to a photon laser. Phys. Rev. A 55, 4632–4635 (1997).

    Article  ADS  Google Scholar 

  96. Mosor, S. et al. Scanning a photonic crystal slab nanocavity by condensation of xenon. Appl. Phys. Lett. 87, 141105 (2005).

    Article  ADS  Google Scholar 

  97. Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

    Article  ADS  Google Scholar 

  98. Borri, P., Langbein, W., Woggon, U., Jensen, J. R. & Hvam, J. M. Microcavity polariton linewidths in the weak-disorder regime. Phys. Rev. B 63, 035307 (2000).

    Article  ADS  Google Scholar 

  99. Soljacic, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

    Article  ADS  Google Scholar 

  100. McCall, S. L. & Gibbs, H. M. in Optical Bistability (eds Bowden, C. M., Ciftan, M. & Robl, H. R.) 1–7 (Plenum, New York, 1981).

    Book  Google Scholar 

  101. Sanchez-Mondragon, J. J., Narozhny, N. B. & Eberly, J. H. Theory of spontaneous-emission line shape in an ideal cavity. Phys. Rev. Lett. 51, 550–553 (1983).

    Article  ADS  Google Scholar 

  102. Brune, M. et al. Quantum Rabi oscillation: A direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996).

    Article  ADS  MATH  Google Scholar 

  103. Carmichael, H. & Orozco, L. A. Single atom lases orderly light. Nature 425, 246–247 (2003).

    Article  ADS  Google Scholar 

  104. Santori, C., Fattal, D., Vukovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  105. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  ADS  Google Scholar 

  106. McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004).

    Article  ADS  Google Scholar 

  107. Cui, G. & Raymer, M. G. Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime. Opt. Express 13, 9660–9665 (2005).

    Article  ADS  Google Scholar 

  108. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  109. Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Deterministic coupling of single ions to an optical cavity. Appl. Phys. B 76, 125–128 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

For financial support in Tucson: DARPA, NSF (AMOP and EPDT), AFOSR, and AFOSR DURINT; in Marburg: partially by the Deutsche Forschungsgemeinschaft through the Quantum Optics in Semiconductors Research Group and the Optodynamics Center of the Philipps-Universität Marburg; at Caltech: MURI Center for Photonic Quantum Information Systems (ARO/ARDA), NSF-ECS-NIRT and AFOSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Khitrova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khitrova, G., Gibbs, H., Kira, M. et al. Vacuum Rabi splitting in semiconductors. Nature Phys 2, 81–90 (2006). https://doi.org/10.1038/nphys227

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing