Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system

Abstract

Bacterial-based interaction trap systems provide a powerful method to identify interacting macromolecules. When carried out in the context of a genetic selection, interacting pairs can be rapidly isolated from large combinatorial libraries. This technology has been adapted to allow the identification of DNA-binding sequences for a transcription factor (TF) from a large randomized library. This procedure uses a library of randomized binding sites upstream of a cocistronic HIS3-URA3 reporter cassette. The URA3 reporter allows self-activating sequences to be removed from the library through counter-selection. The HIS3 reporter allows sequences that are recognized by a TF to be isolated from the library, where transcriptional activation is mediated by fusion of the TF to the α-subunit of RNA polymerase. This technology can be used to characterize monomeric, homodimeric and heterodimeric DNA-binding domains and, once a suitable library is constructed, binding sites can be identified in approximately 10 d. The bacterial one-hybrid system allows larger libraries to be searched than the corresponding yeast one-hybrid system and, unlike SELEX, it does not require purification of the TF(s). The complexity of the binding site libraries that can be searched using the bacterial system is, however, more limited than SELEX, and some eukaryotic factors may not express or fold efficiently in the bacterial system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the bacterial one-hybrid selection system.
Figure 2: A flow chart with approximate timelines for (a) the binding-site library construction and purification, (b) the selection procedure to isolate TF binding sites from a purified binding-site library and (c) an additional counter-selection to eliminate self-activating sequences.
Figure 3: Plasmid maps and detailed information on the multiple cloning sites (MCS) present in the plasmids for the bacterial one-hybrid system.
Figure 4: Example of the process used to identify overrepresented sequence motifs present in insert sequences isolated from a binding-site selection.

Similar content being viewed by others

References

  1. Joung, J.K., Ramm, E.I. & Pabo, C.O. A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc. Natl. Acad. Sci. USA 97, 7382–7387 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Meng, X., Smith, R.M., Giesecke, A.G., Joung, J.K. & Wolfe, S.A. Counter-selectable marker for bacterial-based interaction trap systems. Biotechniques 40, 179–184 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Nickels, B.E. et al. The interaction between sigma70 and the beta-flap of Escherichia coli RNA polymerase inhibits extension of nascent RNA during early elongation. Proc. Natl. Acad. Sci. USA 102, 4488–4493 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Vallet-Gely, I., Donovan, K.E., Fang, R., Joung, J.K. & Dove, S.L. Repression of phase-variable cup gene expression by H-NS-like proteins in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 102, 11082–11087 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Giesecke, A., Fang, R. & Joung, J. Synthetic protein–protein interaction domains created by shuffling Cys2His2 zinc-fingers. Mol. Syst. Biol. 2, published online 31 March 2006 (doi:10.1038/msb4100053).

  6. Hurt, J.A., Thibodeau, S.A., Hirsh, A.S., Pabo, C.O. & Joung, J.K. Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc. Natl. Acad. Sci. USA 100, 12271–12276 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Meng, X., Brodsky, M.H. & Wolfe, S.A. A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat. Biotechnol. 23, 988–994 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Durai, S., Bosley, A., Abulencia, A.B., Chandrasegaran, S. & Ostermeier, M. A bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions. Comb. Chem. High Throughput Screen 9, 301–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Althoff, E.A. & Cornish, V.W. A bacterial small-molecule three-hybrid system. Angew Chem. Int. Ed. Engl. 41, 2327–2330 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Dove, S.L. & Hochschild, A. Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev. 12, 745–754 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dove, S.L., Joung, J.K. & Hochschild, A. Activation of prokaryotic transcription through arbitrary protein-protein contacts. Nature 386, 627–630 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Wilson, T.E., Fahrner, T.J., Johnston, M. & Milbrandt, J. Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252, 1296–1300 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Deplancke, B., Dupuy, D., Vidal, M. & Walhout, A.J. A gateway-compatible yeast one-hybrid system. Genome Res. 14, 2093–2101 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wright, W.E. & Funk, W.D. CASTing for multicomponent DNA-binding complexes. Trends Biochem. Sci. 18, 77–80 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Roulet, E. et al. High-throughput SELEX-SAGE method for quantitative modeling of transcription-factor binding sites. Nat. Biotechnol. 20, 831–835 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Hu, J.C., Kornacker, M.G. & Hochschild, A. Escherichia coli one- and two-hybrid systems for the analysis and identification of protein-protein interactions. Methods 20, 80–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Serebriiskii, I.G. et al. A combined yeast/bacteria two-hybrid system: development and evaluation. Mol. Cell. Proteomics 4, 819–826 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jen-Jacobson, L. Protein-DNA recognition complexes: conservation of structure and binding energy in the transition state. Biopolymers 44, 153–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Thibodeau, S.A., Fang, R. & Joung, J.K. High-throughput beta-galactosidase assay for bacterial cell-based reporter systems. Biotechniques 36, 410–415 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Solomon, D.L., Amati, B. & Land, H. Distinct DNA binding preferences for the c-Myc/Max and Max/Max dimers. Nucleic Acids Res. 21, 5372–5376 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan, R., Small, S., Desplan, C., Dearolf, C.R. & Darnell, J.E. Jr. Identification of a Stat gene that functions in Drosophila development. Cell 84, 421–430 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Patrick, W.M., Firth, A.E. & Blackburn, J.M. User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries. Protein Eng. 16, 451–457 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Bosley, A.D. & Ostermeier, M. Mathematical expressions useful in the construction, description and evaluation of protein libraries. Biomol. Eng. 22, 57–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  Google Scholar 

  25. Liu, X., Brutlag, D.L. & Liu, J.S. BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac. Symp. Biocomput. 6, 127–138 (2001).

    Google Scholar 

  26. Bailey, T.L. & Elkan, C. The value of prior knowledge in discovering motifs with MEME. Proc. Int. Conf. Intell. Syst. Mol. Biol. 3, 21–29 (1995).

    CAS  PubMed  Google Scholar 

  27. Tompa, M. et al. Assessing computational tools for the discovery of transcription factor binding sites. Nat. Biotechnol. 23, 137–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Hu, J., Li, B. & Kihara, D. Limitations and potentials of current motif discovery algorithms. Nucleic Acids Res. 33, 4899–4913 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schneider, T.D. & Stephens, R.M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank J. McNulty and M. Noyes for critiquing this manuscript. This work was supported by a National Institutes of Health grant 1R01GM068110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scot A Wolfe.

Ethics declarations

Competing interests

The authors have a pending patent application on related subject matter (USPTO).

Supplementary information

Supplementary Figure 1

Self-activating sequences isolated from the binding site selections. (PDF 3712 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, X., Wolfe, S. Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system. Nat Protoc 1, 30–45 (2006). https://doi.org/10.1038/nprot.2006.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing