Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A method for parental RNA interference in the wasp Nasonia vitripennis

Abstract

The wasp Nasonia vitripennis is emerging as a useful model organism in which to address a variety of biological questions, due, in part, to its ease of laboratory use, unique aspects of its biology and the sequencing of its genome. In order to take full advantage of the potential of this organism, methods for manipulating gene function are needed. To this end, a protocol for parental RNA interference (pRNAi) in N. vitripennis is described. pRNAi entails injecting pupae with double-stranded RNA, allowing the injected wasps to eclose and examining the progeny for developmental defects. This basic protocol is described in the context of the life cycle of N. vitripennis. This technique has been useful in elucidating the function of most, although not all, genes tested to date, and has potential applications beyond embryonic patterning. pRNAi experiments in Nasonia can be completed in as little as 2 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of pupal stages of N. vitripennis
Figure 2: Distinguishing males and females in N. vitripennis
Figure 3: Schematic representation of the general strategy used to produce the template for dsRNA.
Figure 4: An example of wasp pupae affixed to a coverslip, ready for injection.
Figure 5
Figure 6: An example of the components of an egg-laying chamber for collecting N. vitripennis embryos.
Figure 7: Healthy host pupa (S. bullata)
Figure 8: Collecting embryos from a parasitized host.
Figure 9: Dissecting embryos from chorion and vitelline membrane.
Figure 10: Example of effects of pRNAi on Nasonia larval cuticles.
Figure 11: Example of effects of pRNAi on embryonic gene expression.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Lohmann, J.U., Endl, I. & Bosch, T.C. Silencing of developmental genes in hydra. Dev. Biol. 214, 211–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Reddien, P.W., Bermange, A.L., Murfitt, K.J., Jennings, J.R. & Sanchez Alvarado, A. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev. Cell 8, 635–649 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bucher, G., Scholten, J. & Klingler, M. Parental RNAi in Tribolium (Coleoptera). Curr. Biol. 12, R85–R86 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Copf, T., Schroder, R. & Averof, M. Ancestral role of caudal genes in axis elongation and segmentation. Proc. Natl. Acad. Sci. USA 101, 17711–17715 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mito, T. et al. Non-canonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development 132, 2069–2079 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, P.Z. & Kaufman, T.C. hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development 131, 1515–1527 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Lynch, J.A., Brent, A.E., Leaf, D.S., Pultz, M.A. & Desplan, C. Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature 439, 728–732 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Whiting, A.R. The biology of the parasitic wasp Mormoniella vitripennis [=Nasonia brevicornis] (Walker). Quart. Rev. Biol. 42, 333–406 (1967).

    Article  Google Scholar 

  10. Azab, A.K., Tawfik, M.F.S. & Awadallah, K.T. Morphology of the early stages of Nasonia vitripennis Walker. Bull. Soc. Ent. Egypte 457, 457–467 (1967).

    Google Scholar 

  11. Schneiderman, H.A. & Horwitz, J. The induction and termination of facultative diapause in the chalcid wasps Mormoniella vitripennis (Walker) and Tritneptis klugii (Ratzeburg). J. Exp. Biol. 35, 520–551 (1958).

    CAS  Google Scholar 

  12. Lynch, J.A., Olesnicky, E.C. & Desplan, C. Regulation and function of tailless in the long germ wasp Nasonia vitripennis. Dev. Genes Evol. (2006); published online 3 May (doi:10.1007/s00427-006-0076-5).

    Article  PubMed  Google Scholar 

  13. Tram, U. & Sullivan, W. Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 296, 1124–1126 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Ferree, P.M., McDonald, K., Fasulo, B. & Sullivan, W. The origin of centrosomes in parthenogenetic hymenopteran insects. Curr. Biol. 16, 801–807 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Beukeboom, L.W. & Kamping, A. No patrigenes required for femaleness in the haplodiploid wasp Nasonia vitripennis. Genetics 172, 981–989 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Trent, C., Crosby, C. & Eavey, J. Additional evidence for the genomic imprinting model of sex determination in the haplodiploid wasp Nasonia vitripennis: isolation of biparental diploid males after X-ray mutagenesis. Heredity 96, 368–376 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Shuker, D.M. & West, S.A. Information constraints and the precision of adaptation: sex ratio manipulation in wasps. Proc. Natl. Acad. Sci. USA 101, 10363–10367 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beukeboom, L.W. & van den Assem, J. Courtship and mating behaviour of interspecific Nasonia hybrids (Hymenoptera, Pteromalidae): a grandfather effect. Behav. Genet. 31, 167–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Bordenstein, S.R., O'Hara, F.P. & Werren, J.H. Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409, 707–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Gadau, J., Page, R.E. & Werren, J.H. The genetic basis of the interspecific differences in wing size in Nasonia (Hymenoptera; Pteromalidae): major quantitative trait loci and epistasis. Genetics 161, 673–684 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pultz, M.A. & Leaf, D.S. The jewel wasp Nasonia: querying the genome with haplo-diploid genetics. Genesis 35, 185–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Pultz, M.A., Pitt, J.N. & Alto, N.M. Extensive zygotic control of the anteroposterior axis in the wasp Nasonia vitripennis. Development 126, 701–710 (1999).

    CAS  PubMed  Google Scholar 

  23. Bull, A.L. Stages of living embryos in the jewel wasp Mormoniella (Nasonia) vitripennis (Walker). Int. J. Insect Morphol. Embryol. 11, 1–23 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Mary Anne Pultz and David Leaf for providing invaluable knowledge and assistance in working with Nasonia. This work was supported by a NIH grant to C.D.; J.A.L. was supported by a NIH Training Grant and a Dean Dissertation Fellowship from NYU. This investigation was conducted in a facility constructed with support from a Research Facilities Improvement grant from NCRR, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Desplan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynch, J., Desplan, C. A method for parental RNA interference in the wasp Nasonia vitripennis. Nat Protoc 1, 486–494 (2006). https://doi.org/10.1038/nprot.2006.70

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.70

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing