Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression

Abstract

Colorectal cancer is a life-threatening disease that can develop spontaneously or as a complication of inflammatory bowel diseases. Mouse models are essential tools for the preclinical testing of novel therapeutic options in vivo. Here, we provide a highly reliable protocol for an experimental mouse model to study the development of colon cancers. It is based on the mutagenic agent azoxymethane (AOM), which exerts colonotropic carcinogenicity. Repeated intraperitoneal administration of AOM results in the development of spontaneous tumors within 30 weeks. As an alternative option, inflammation-dependent tumor growth can be investigated by combining the administration of AOM with the inflammatory agent dextran sodium sulfate in drinking water, which causes rapid growth of multiple colon tumors per mouse within 10 weeks. Different scoring systems including number of tumors and tumor size identify factors promoting or inhibiting tumor initiation and/or tumor progression, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Scheme for the experimental course of AOM-induced colon carcinogenesis with spontaneous or inflammation-driven tumor progression.
Figure 3: Macroscopic tumor evaluation.
Figure 4: Endoscopic tumor investigation.
Figure 5: Microscopic and chromoendoscopic tumor analysis.

Similar content being viewed by others

References

  1. Powell, S.M. et al. Molecular diagnosis of familial adenomatous polyposis. N. Engl. J. Med. 329, 1982–1987 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Corpet, D.E. & Pierre, F. How good are rodent models of carcinogenesis in predicting efficacy in humans? A systematic review and meta-analysis of colon chemoprevention in rats, mice and men. Eur. J. Cancer 41, 1911–1922 (2005).

    Article  CAS  Google Scholar 

  3. Moser, A.R., Pitot, H.C. & Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  Google Scholar 

  4. Papanikolaou, A. et al. Initial levels of azoxymethane-induced DNA methyl adducts are not predictive of tumor susceptibility in inbred mice. Toxicol. Appl. Pharmacol. 150, 196–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Evans, J.T., Hauschka, T.S. & Mittelman, A. Differential susceptibility of four mouse strains to induction of multiple large-bowel neoplasms by 1,2-dimethylhydrazine. J. Natl. Cancer Inst. 52, 999–1000 (1974).

    Article  CAS  PubMed  Google Scholar 

  6. Rosenberg, D.W. & Liu, Y. Induction of aberrant crypts in murine colon with varying sensitivity to colon carcinogenesis. Cancer Lett. 92, 209–214 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Druckrey, E. Production of colonic carcinomas by 1,2–dialkylhydrazines and azoxyalkanes in Carcinoma of the Colon and the Antecedent Epithelium (ed. Burdette, W.J.) 267–279 (Thomas, Springfield, IL, 1970).

    Google Scholar 

  8. Moriya, M., Harada, T. & Shirasu, Y. Inhibition of carcinogenicities of 1,2-dimethylhydrazine and azoxymethane by pyrazole. Cancer Lett. 17, 147–152 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Bissahoyo, A. et al. Azoxymethane is a genetic background-dependent colorectal tumor initiator and promoter in mice: effects of dose, route, and diet. Toxicol. Sci. 88, 340–345 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Sohn, O.S., Fiala, E.S., Requeijo, S.P., Weisburger, J.H. & Gonzalez, F.J. Differential effects of CYP2E1 status on the metabolic activation of the colon carcinogens azoxymethane and methylazoxymethanol. Cancer Res. 61, 8435–8440 (2001).

    CAS  PubMed  Google Scholar 

  11. Fiala, E.S. Investigations into the metabolism and mode of action of the colon carcinogens 1,2-dimethylhydrazine and azoxymethane. Cancer 40, 2436–2445 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Reddy, B.S., Weisburger, J.H., Narisawa, T. & Wynder, E.L. Colon carcinogenesis in germ-free rats with 1,2-dimethylhydrazine and N-methyl-n′-nitro-N-nitrosoguanidine. Cancer Res. 34, 2368–2372 (1974).

    CAS  Google Scholar 

  13. Baek, S.J. et al. Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology 131, 1553–1560 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Becker, C. et al. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21, 491–501 (2004).

    Article  CAS  Google Scholar 

  15. Greten, F.R. et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Boivin, G.P. et al. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 124, 762–777 (2003).

    Article  Google Scholar 

  17. Nambiar, P.R. et al. Preliminary analysis of azoxymethane induced colon tumors in inbred mice commonly used as transgenic/knockout progenitors. Int. J. Oncol. 22, 145–150 (2003).

    CAS  PubMed  Google Scholar 

  18. Shamsuddin, A.M. Comparative studies of primary, metastatic and transplanted colon adenocarcinomas of Fischer 344 rats. J. Submicrosc. Cytol. 16, 327–339 (1984).

    CAS  PubMed  Google Scholar 

  19. Maltzman, T., Whittington, J., Driggers, L., Stephens, J. & Ahnen, D. AOM-induced mouse colon tumors do not express full-length APC protein. Carcinogenesis 18, 2435–2439 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi, M., Nakatsugi, S., Sugimura, T. & Wakabayashi, K. Frequent mutations of the beta-catenin gene in mouse colon tumors induced by azoxymethane. Carcinogenesis 21, 1117–1120 (2000).

    CAS  PubMed  Google Scholar 

  21. Guillem, J.G. et al. Changes in expression of oncogenes and endogenous retroviral-like sequences during colon carcinogenesis. Cancer Res. 48, 3964–3971 (1988).

    CAS  PubMed  Google Scholar 

  22. Wang, Q.S., Papanikolaou, A., Sabourin, C.L. & Rosenberg, D.W. Altered expression of cyclin D1 and cyclin-dependent kinase 4 in azoxymethane-induced mouse colon tumorigenesis. Carcinogenesis 19, 2001–2006 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Vivona, A.A. et al. K-ras mutations in aberrant crypt foci, adenomas and adenocarcinomas during azoxymethane-induced colon carcinogenesis. Carcinogenesis 14, 1777–1781 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi, M., Mutoh, M., Kawamori, T., Sugimura, T. & Wakabayashi, K. Altered expression of beta-catenin, inducible nitric oxide synthase and cyclooxygenase-2 in azoxymethane-induced rat colon carcinogenesis. Carcinogenesis 21, 1319–1327 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Okayasu, I. et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694–702 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka, T. et al. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 94, 965–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki, R., Kohno, H., Sugie, S., Nakagama, H. & Tanaka, T. Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis 27, 162–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Kohno, H. et al. Dietary administration with prenyloxycoumarins, auraptene and collinin, inhibits colitis-related colon carcinogenesis in mice. Int. J. Cancer 118, 2936–2942 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Okayasu, I., Ohkusa, T., Kajiura, K., Kanno, J. & Sakamoto, S. Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39, 87–92 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Becker, C. et al. In vivo imaging of colitis and colon cancer development in mice using high resolution chromoendoscopy. Gut 54, 950–954 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Papanikolaou, A., Wang, Q.S., Papanikolaou, D., Whiteley, H.E. & Rosenberg, D.W. Sequential and morphological analyses of aberrant crypt foci formation in mice of differing susceptibility to azoxymethane-induced colon carcinogenesis. Carcinogenesis 21, 1567–1572 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Kumar, S.P., Roy, S.J., Tokumo, K. & Reddy, B.S. Effect of different levels of calorie restriction on azoxymethane-induced colon carcinogenesis in male F344 rats. Cancer Res. 50, 5761–5766 (1990).

    CAS  PubMed  Google Scholar 

  33. Kawamori, T. et al. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res. 59, 597–601 (1999).

    CAS  PubMed  Google Scholar 

  34. Bird, R.P. Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett. 37, 147–151 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Takayama, T. et al. Aberrant crypt foci of the colon as precursors of adenoma and cancer. N. Engl. J. Med. 339, 1277–1284 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Caderni, G. et al. Identification of mucin-depleted foci in the unsectioned colon of azoxymethane-treated rats: correlation with carcinogenesis. Cancer Res. 63, 2388–2392 (2003).

    CAS  PubMed  Google Scholar 

  37. Kudo, S. et al. Colorectal tumours and pit pattern. J. Clin. Pathol. 47, 880–885 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nambiar, P.R. et al. Genetic signatures of high- and low-risk aberrant crypt foci in a mouse model of sporadic colon cancer. Cancer Res. 64, 6394–6401 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alexei Nikolajew for major contributions regarding animal work and immunohistochemistry. This work was supported by grants from the Deutsche Forschungsgemeinschaft (GK1043 to C.N., C.B. and M.F.N. and SFB 432 to M.F.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus F Neurath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neufert, C., Becker, C. & Neurath, M. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc 2, 1998–2004 (2007). https://doi.org/10.1038/nprot.2007.279

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.279

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing