Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms

Abstract

Information on subcellular localization of proteins is important to molecular cell biology, proteomics, system biology and drug discovery. To provide the vast majority of experimental scientists with a user-friendly tool in these areas, we present a package of Web servers developed recently by hybridizing the 'higher level' approach with the ab initio approach. The package is called Cell-PLoc and contains the following six predictors: Euk-mPLoc, Hum-mPLoc, Plant-PLoc, Gpos-PLoc, Gneg-PLoc and Virus-PLoc, specialized for eukaryotic, human, plant, Gram-positive bacterial, Gram-negative bacterial and viral proteins, respectively. Using these Web servers, one can easily get the desired prediction results with a high expected accuracy, as demonstrated by a series of cross-validation tests on the benchmark data sets that covered up to 22 subcellular location sites and in which none of the proteins included had ≥25% sequence identity to any other protein in the same subcellular-location subset. Some of these Web servers can be particularly used to deal with multiplex proteins as well, which may simultaneously exist at, or move between, two or more different subcellular locations. Proteins with multiple locations or dynamic features of this kind are particularly interesting, because they may have some special biological functions intriguing to investigators in both basic research and drug discovery. This protocol is a step-by-step guide on how to use the Web-server predictors in the Cell-PLoc package. The computational time for each prediction is less than 5 s in most cases. The Cell-PLoc package is freely accessible at http://chou.med.harvard.edu/bioinf/Cell-PLoc.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: An illustration to show the top page of the Web server Euk-mPLoc at http://chou.med.harvard.edu/bioinf/euk-multi/.
Figure 4: A schematic illustration to show the various different components or organelles in a eukaryotic cell.
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ehrlich, J.S., Hansen, M.D. & Nelson, W.J. Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics during epithelial cell–cell adhesion. Dev. Cell 3, 259–270 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Glory, E. & Murphy, R.F. Automated subcellular location determination and high-throughput microscopy. Dev. Cell 12, 7–16 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL. Nucleic Acids Res. 25, 31–36 (2000).

    Article  Google Scholar 

  4. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hill, D.P., Blake, J.A., Richardson, J.E. & Ringwald, M. Extension and integration of the gene ontology (GO): combining GO vocabularies with external vocabularies. Genome Res. 12, 1982–1991 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chou, K.C. & Shen, H.B. Review: recent progresses in protein subcellular location prediction. Anal. Biochem. 370, 1–16 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Chou, K.C. Review: structural bioinformatics and its impact to biomedical science. Curr. Med. Chem. 11, 2105–2134 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Lubec, G., Afjehi-Sadat, L., Yang, J.W. & John, J.P. Searching for hypothetical proteins: theory and practice based upon original data and literature. Prog. Neurobiol. 77, 90–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Nakai, K. & Kanehisa, M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897–911 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Nakashima, H. & Nishikawa, K. Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. J. Mol. Biol. 238, 54–61 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Cedano, J., Aloy, P., P'erez-Pons, J.A. & Querol, E. Relation between amino acid composition and cellular location of proteins. J. Mol. Biol. 266, 594–600 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Reinhardt, A. & Hubbard, T. Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res. 26, 2230–2236 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chou, K.C. & Elrod, D.W. Protein subcellular location prediction. Protein Eng. 12, 107–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Yuan, Z. Prediction of protein subcellular locations using Markov chain models. FEBS Lett. 451, 23–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Nakai, K. Protein sorting signals and prediction of subcellular localization. Adv. Protein Chem. 54, 277–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Murphy, R.F., Boland, M.V. & Velliste, M. Towards a systematics for protein subcellular location: quantitative description of protein localization patterns and automated analysis of fluorescence microscope images. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8, 251–259 (2000).

    CAS  PubMed  Google Scholar 

  18. Emanuelsson, O., Nielsen, H., Brunak, S. & von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005–1016 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Feng, Z.P. Prediction of the subcellular location of prokaryotic proteins based on a new representation of the amino acid composition. Biopolymers 58, 491–499 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Hua, S. & Sun, Z. Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17, 721–728 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Feng, Z.P. & Zhang, C.T. Prediction of the subcellular location of prokaryotic proteins based on the hydrophobicity index of amino acids. Int. J. Biol. Macromol. 28, 255–261 (2001).

    Article  PubMed  Google Scholar 

  22. Feng, Z.P. An overview on predicting the subcellular location of a protein. In Silico Biol. 2, 291–303 (2002).

    CAS  PubMed  Google Scholar 

  23. Chou, K.C. & Cai, Y.D. Using functional domain composition and support vector machines for prediction of protein subcellular location. J. Biol. Chem. 277, 45765–45769 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, G.P. & Doctor, K. Subcellular location prediction of apoptosis proteins. Proteins 50, 44–48 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Pan, Y.X. et al. Application of pseudo amino acid composition for predicting protein subcellular location: stochastic signal processing approach. J. Protein Chem. 22, 395–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Park, K.J. & Kanehisa, M. Prediction of protein subcellular locations by support vector machines using compositions of amino acid and amino acid pairs. Bioinformatics 19, 1656–1663 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Gardy, J.L. et al. PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res. 31, 3613–3617 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang, Y. & Li, Y. Prediction of protein subcellular locations using fuzzy k-NN method. Bioinformatics 20, 21–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Xiao, X. et al. Using complexity measure factor to predict protein subcellular location. Amino Acids 28, 57–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Lei, Z. & Dai, Y. An SVM-based system for predicting protein subnuclear localizations. BMC Bioinformatics 6, 291 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garg, A., Bhasin, M. & Raghava, G.P. Support vector machine-based method for subcellular localization of human proteins using amino acid compositions, their order, and similarity search. J. Biol. Chem. 280, 14427–14432 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Matsuda, S. et al. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804–2813 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao, Q.B., Wang, Z.Z., Yan, C. & Du, Y.H. Prediction of protein subcellular location using a combined feature of sequence. FEBS Lett. 579, 3444–3448 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Xiao, X., Shao, S.H., Ding, Y.S., Huang, Z.D. & Chou, K.C. Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 30, 49–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Chou, K.C. & Shen, H.B. Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization. Biochem. Biophys. Res. Commun. 347, 150–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Guo, J., Lin, Y. & Liu, X. GNBSL: a new integrative system to predict the subcellular location for Gram-negative bacteria proteins. Proteomics 6, 5099–5105 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Hoglund, A., Donnes, P., Blum, T., Adolph, H.W. & Kohlbacher, O. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 22, 1158–1165 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Lee, K., Kim, D.W., Na, D., Lee, K.H. & Lee, D. PLPD: reliable protein localization prediction from imbalanced and overlapped datasets. Nucleic Acids Res. 34, 4655–4666 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, Z.H., Wang, Z.H., Zhang, Z.R. & Wang, Y.X. A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine. FEBS Lett. 580, 6169–6174 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Chou, K.C. & Shen, H.B. Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-nearest neighbor classifiers. J. Proteome Res. 5, 1888–1897 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Pierleoni, A., Martelli, P.L., Fariselli, P. & Casadio, R. BaCelLo: a balanced subcellular localization predictor. Bioinformatics 22, e408–e416 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Shi, J.Y., Zhang, S.W., Pan, Q., Cheng, Y.-M. & Xie, J. Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition. Amino Acids 33, 69–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953–971 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Shen, H.B. & Chou, K.C. Virus-PLoc: a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells. Biopolymers 85, 233–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, Y.L. & Li, Q.Z. Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo amino acid composition. J. Theor. Biol. 248, 377–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Nair, R. & Rost, B. Sequence conserved for subcellular localization. Protein Sci. 11, 2836–2847 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chou, K.C. Prediction of protein cellular attributes using pseudo amino acid composition. Proteins, (Erratum: ibid., 2001, Vol. 44, 60) 43, 246–255 (2001).

    Article  Google Scholar 

  49. Chou, K.C. & Shen, H.B. Predicting protein subcellular location by fusing multiple classifiers. J. Cell. Biochem. 99, 517–527 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, C., Zhou, X., Tian, Y., Zou, X. & Cai, P. Predicting protein structural class with pseudo-amino acid composition and support vector machine fusion network. Anal. Biochem. 357, 116–121 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, C., Tian, Y.X., Zou, X.Y., Cai, P.X. & Mo, J.Y. Using pseudo-amino acid composition and support vector machine to predict protein structural class. J. Theor. Biol. 243, 444–448 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, S.W., Pan, Q., Zhang, H.C., Shao, Z.C. & Shi, J.Y. Prediction protein homo-oligomer types by pseudo amino acid composition: approached with an improved feature extraction and naive Bayes feature fusion. Amino Acids 30, 461–468 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Du, P. & Li, Y. Prediction of protein submitochondrial locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence. BMC Bioinformatics 7, 518 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mondal, S., Bhavna, R., Mohan Babu, R. & Ramakumar, S. Pseudo amino acid composition and multi-class support vector machines approach for conotoxin superfamily classification. J. Theor. Biol. 243, 252–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Lin, H. & Li, Q.Z. Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant. Biochem. Biophys. Res. Commun. 354, 548–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Lin, H. & Li, Q.Z. Using pseudo amino acid composition to predict protein structural class: approached by incorporating 400 dipeptide components. J. Comput. Chem. 28, 1463–1466 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Pu, X., Guo, J., Leung, H. & Lin, Y. Prediction of membrane protein types from sequences and position-specific scoring matrices. J. Theor. Biol. 247, 259–265 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Kurgan, L.A., Stach, W. & Ruan, J. Novel scales based on hydrophobicity indices for secondary protein structure. J. Theor. Biol. 248, 354–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Zhou, X.B., Chen, C., Li, Z.C. & Zou, X.Y. Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J. Theor. Biol. 248, 546–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Mundra, P., Kumar, M., Kumar, K.K., Jayaraman, V.K. & Kulkarni, B.D. Using pseudo amino acid composition to predict protein subnuclear localization: approached with PSSM. Pattern Recogn. Lett. 28, 1610–1615 (2007).

    Article  Google Scholar 

  61. Shen, H.B. & Chou, K.C. PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition. Anal. Biochem. doi: 10.10.1016/j.ab.2007.10.012 (2007).

  62. Chou, K.C. & Shen, H.B. Large-scale plant protein subcellular location prediction. J. Cell. Biochem. 100, 665–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Vapnik, V. Statistical Learning Theory (Wiley-Interscience, New York, 1998).

    Google Scholar 

  64. Bendtsen, J.D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Hiller, K., Grote, A., Scheer, M., Munch, R. & Jahn, D. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 32, W375–W379 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chou, K.C. & Shen, H.B. Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem. Biophys. Res. Commun. 357, 633–640 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Shen, H.B. & Chou, K.C. Signal-3L: a 3-layer approach for predicting signal peptide. Biochem. Biophys. Res. Commun. 363, 297–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Regev-Rudzki, N. & Pines, O. Eclipsed distribution: a phenomenon of dual targeting of protein and its significance. Bioessays 29, 772–782 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Lubec, G. & Afjehi-Sadat, L. Limitations and pitfalls in protein identification by mass spectrometry. Chem. Rev. 107, 3568–3584 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Jahandideh, S., Abdolmaleki, P., Jahandideh, M. & Asadabadi, E.B. Novel two-stage hybrid neural discriminant model for predicting proteins structural classes. Biophys. Chem. 128, 87–93 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Afjehi-Sadat, L. et al. Structural and functional analysis of hypothetical proteins in mouse hippocampus from two-dimensional gel electrophoresis. J. Proteome Res. 6, 711–723 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Diao, Y. et al. Using pseudo amino acid composition to predict transmembrane regions in protein: cellular automata and Lempel–Ziv complexity. Amino Acids, doi: 10.1007/s00726-007-0550-z (2007).

  73. Chen, Y.L. & Li, Q.Z. Prediction of the subcellular location of apoptosis proteins. J. Theor. Biol. 245, 775–783 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Ho, V.S.M. & Ng, T.Z. Chitinase-like proteins with antifungal activity from emperor banana fruits. Protein Pept. Lett. 14, 828–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Chou, K.C. & Cai, Y.D. Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem. Biophys. Res. Commun. 320, 1236–1239 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Apweiler, R. et al. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 29, 37–40 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chou, K.C. & Cai, Y.D. Predicting protein structural class by functional domain composition. Biochemical and Biophysical Research Communications, Corrigendum: ibid., 2005, Vol. 329, 1362 321, 1007–1009 (2004).

    Google Scholar 

  78. Cover, T.M. & Hart, P.E. Nearest neighbour pattern classification. IEEE Trans. Inf. Theor. IT 13, 21–27 (1967).

    Article  Google Scholar 

  79. Denoeux, T. A k-nearest neighbor classification rule based on Dempster–Shafer theory. IEEE Trans. Syst. Man Cybern. 25, 804–813 (1995).

    Article  Google Scholar 

  80. Zouhal, L.M. & Denoeux, T. An evidence-theoretic k-NN rule with parameter optimization. IEEE Trans. Syst. Man Cybern. 28, 263–271 (1998).

    Article  Google Scholar 

  81. Chou, K.C. & Shen, H.B. Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J. Proteome Res. 6, 1728–1734 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Shen, H.B. & Chou, K.C. Hum-mPLoc: an ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites. Biochem. Biophys. Res. Commun. 355, 1006–1011 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Shen, H.B. & Chou, K.C. Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Protein Eng. Des. Sel. 20, 39–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Chou, K.C. & Shen, H.B. Large-scale predictions of Gram-negative bacterial protein subcellular locations. J. Proteome Res. 5, 3420–3428 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Becker, H.F., Motorin, Y., Planta, R.J. & Grosjean, H. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res. 25, 4493–4499 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Geier, C., von Figura, K. & Pohlmann, R. Structure of the human lysosomal acid phosphatase gene. Eur. J. Biochem. 183, 611–616 (1989).

    Article  CAS  PubMed  Google Scholar 

  87. Jorgensen, R. Plant genomes. Plant Cell 18, 1099 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  88. Jackson, S., Rounsley, S. & Purugganan, M. Comparative sequencing of plant genomes: choices to make. Plant Cell 18, 1100–1104 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chou, K.C. & Zhang, C.T. Review: Prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol. 30, 275–349 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Zhou, G.P. An intriguing controversy over protein structural class prediction. J. Protein Chem. 17, 729–738 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Cao, Y. et al. Prediction of protein structural class with rough sets. BMC Bioinformatics 7, 20 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gao, Q.B. & Wang, Z.Z. Classification of G-protein coupled receptors at four levels. Protein Eng. Des. Sel. 19, 511–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Kedarisetti, K.D., Kurgan, L.A. & Dick, S. Classifier ensembles for protein structural class prediction with varying homology. Biochem. Biophys. Res. Commun. 348, 981–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Zhou, G.P. & Cai, Y.D. Predicting protease types by hybridizing gene ontology and pseudo amino acid composition. Proteins 63, 681–684 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Chou, K.C. & Shen, H.B. MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem. Biophys. Res. Commun. 360, 339–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Shen, H.B. & Chou, K.C. EzyPred: a top-down approach for predicting enzyme functional classes and subclasses. Biochem. Biophys. Res. Commun. 364, 53–59 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the editor and the anonymous reviewers for their valuable suggestions that were very helpful for strengthening the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuo-Chen Chou or Hong-Bin Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, KC., Shen, HB. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3, 153–162 (2008). https://doi.org/10.1038/nprot.2007.494

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.494

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing