Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology

Abstract

Here we provide a protocol for engineering the N-glycosylation pathway of the yeast Pichia pastoris. The general strategy consists of the disruption of an endogenous glycosyltransferase gene (OCH1) and the stepwise introduction of heterologous glycosylation enzymes. Each engineering step results in the introduction of one glycosidase or glycosyltransferase activity into the Pichia endoplasmic reticulum or Golgi complex and consists of a number of stages: transformation with the appropriate GlycoSwitch vector, small-scale cultivation of a number of transformants, sugar analysis and heterologous protein expression analysis. If desired, the resulting clone can be further engineered by repeating the procedure with the next GlycoSwitch vector. Each engineering step takes 3 weeks. The conversion of any wild-type Pichia strain into a strain that modifies its glycoproteins with Gal2GlcNAc2Man3GlcNAc2N-glycans requires the introduction of five GlycoSwitch vectors. Three examples of the full engineering procedure are provided to illustrate the results that can be expected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glycoengineering strategy overview.
Figure 2: SDS-PAGE analysis of medium proteins from mIL-10-producing strains.
Figure 3: DSA-FACE profiles for mIL-10.
Figure 4: DSA-FACE and SDS-PAGE analysis of medium proteins from mGM-CSF-producing strains.
Figure 5: DSA-FACE and SDS-PAGE analysis of medium proteins from mIL-22-producing strains.

Similar content being viewed by others

References

  1. Cereghino, G.P., Cereghino, J.L., Ilgen, C. & Cregg, J.M. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris . Curr. Opin. Biotechnol. 13, 329–332 (2002).

    Article  Google Scholar 

  2. Cereghino, J.L. & Cregg, J.M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris . FEMS Microbiol. Rev. 24, 45–66 (2000).

    Article  CAS  Google Scholar 

  3. Dean, N. Asparagine-linked glycosylation in the yeast Golgi. Biochim. Biophys. Acta. 1426, 309–322 (1999).

    Article  CAS  Google Scholar 

  4. Chitlaru, T. et al. Modulation of circulatory residence of recombinant acetylcholinesterase through biochemical or genetic manipulation of sialylation levels. Biochem J. 336, (Part 3): 647–658 (1998).

    Article  CAS  Google Scholar 

  5. Lee, S.J. et al. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295, 1898–1901 (2002).

    Article  CAS  Google Scholar 

  6. Weigel, P.H. Galactosyl and N-acetylgalactosaminyl homeostasis: a function for mammalian asialoglycoprotein receptors. Bioessays 16, 519–524 (1994).

    Article  CAS  Google Scholar 

  7. Winkelhake, J.L. & Nicolson, G.L. Aglycosylantibody. Effects of exoglycosidase treatments on autochthonous antibody survival time in the circulation. J. Biol. Chem. 251, 1074–1080 (1976).

    CAS  PubMed  Google Scholar 

  8. Ballou, C.E. Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol. 185, 440–470 (1990).

    Article  CAS  Google Scholar 

  9. Yip, C.L. et al. Cloning and analysis of the Saccharomyces cerevisiae MNN9 and MNN1 genes required for complex glycosylation of secreted proteins. Proc. Natl. Acad. Sci. USA 91, 2723–2727 (1994).

    Article  CAS  Google Scholar 

  10. Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985).

    Article  CAS  Google Scholar 

  11. Nagasu, T. et al. Isolation of new temperature-sensitive mutants of Saccharomyces cerevisiae deficient in mannose outer chain elongation. Yeast 8, 535–547 (1992).

    Article  CAS  Google Scholar 

  12. Nakayama, K., Nagasu, T., Shimma, Y., Kuromitsu, J. & Jigami, Y. OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. Embo J. 11, 2511–2519 (1992).

    Article  CAS  Google Scholar 

  13. Callewaert, N. et al. Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-α-D-mannosidase for N-glycan engineering in Pichia pastoris . FEBS Letts. 503, 173–178 (2001).

    Article  CAS  Google Scholar 

  14. Vervecken, W. et al. In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris . Appl. Environ. Microbiol. 70, 2639–2646 (2004).

    Article  CAS  Google Scholar 

  15. Hamilton, S.R. et al. Production of complex human glycoproteins in yeast. Science 301, 1244–1246 (2003).

    Article  CAS  Google Scholar 

  16. Li, H. et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris . Nat. Biotechnol. 24, 210–215 (2006).

    Article  CAS  Google Scholar 

  17. Hamilton, S.R. et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313, 1441–1443 (2006).

    Article  CAS  Google Scholar 

  18. Girbach, V. & Strahl, S. Members of the evolutionary conserved PMT family of protein O-mannosyltransferases form distinct protein complexes among themselves. J. Biol. Chem. 278, 12554–12562 (2003).

    Article  Google Scholar 

  19. Kuroda, K. et al. Efficient antibody production upon suppression of O-mannosylation in the yeast Ogataea minuta . Appl. Environ. Microbiol. 74, 446–453 (2008).

    Article  CAS  Google Scholar 

  20. Chiba, Y. et al. Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae . J. Biol. Chem. 273, 26298–26304 (1998).

    Article  CAS  Google Scholar 

  21. Pelham, H.R., Hardwick, K.G. & Lewis, M.J. Sorting of soluble ER proteins in yeast. EMBO J. 7, 1757–1762 (1988).

    Article  CAS  Google Scholar 

  22. Krezdorn, C.H. et al. Human beta 1,4 galactosyltransferase and alpha 2,6 sialyltransferase expressed in Saccharomyces cerevisiae are retained as active enzymes in the endoplasmic reticulum. Eur. J. Biochem. 220, 809–817 (1994).

    Article  CAS  Google Scholar 

  23. Yoshida, S. et al. Expression and characterization of rat UDP-N-acetylglucosamine: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I in Saccharomyces cerevisiae . Glycobiology 9, 53–58 (1999).

    Article  CAS  Google Scholar 

  24. Lussier, M., Sdicu, A.M., Ketela, T. & Bussey, H. Localization and targeting of the Saccharomyces cerevisiae Kre2p/Mnt1p alpha 1,2-mannosyltransferase to a medial-Golgi compartment. J. Cell Biol. 131, 913–927 (1995).

    Article  CAS  Google Scholar 

  25. Chen, X., Zhang, W., Wang, J., Fang, J. & Wang, P.G. Production of alpha-galactosyl epitopes via combined use of two recombinant whole cells harboring UDP-galactose 4-epimerase and alpha-1,3-galactosyltransferase. Biotechnol. Prog. 16, 595–599 (2000).

    Article  CAS  Google Scholar 

  26. Bobrowicz, P. et al. Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14, 757–766 (2004).

    Article  CAS  Google Scholar 

  27. Cregg, J.M. & Russel, K.A. In Pichia Protocols Vol. 103. (eds. Higgins DR & Cregg JM) 27–39 (Humana Press, Totowa, NJ, 1998).

    Article  CAS  Google Scholar 

  28. Peat, S., Whelan, W.J. & Edwards, T.E. Polysaccharides of Baker's yeast. IV. Mannan. J. Chem. Soc. 1, 29–34 (1961).

    Article  Google Scholar 

  29. Laroy, W., Contreras, R. & Callewaert, N. Glycome mapping on DNA sequencing equipment. Nat. Protoc. 1, 397–405 (2006).

    Article  CAS  Google Scholar 

  30. Sainathan, S.K. et al. PEGylated murine granulocyte-macrophage colony-stimulating factor: production, purification, and characterization. Protein Expr. Purif. 44, 94–103 (2005).

    Article  CAS  Google Scholar 

  31. Choi, B.K. et al. Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response. Glycoconj J. 25, 581–593 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Annelies Van Hecke for technical assistance and Dr. Bennet Cohen and Dr. David Bramhill for fruitful discussions. This work was supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) and Research Corporation Technologies (Tucson, AZ, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Callewaert.

Ethics declarations

Competing interests

The authors are either inventors or share otherwise in proceeds of licensing of patents and patent applications covering parts of the described technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, P., Geysens, S., Vervecken, W. et al. Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 4, 58–70 (2009). https://doi.org/10.1038/nprot.2008.213

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.213

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing