Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes

Abstract

MicroRNAs (miRNAs) represent a class of short (22 nt) noncoding RNAs that control gene expression post-transcriptionally. Microarray technology is frequently applied to monitor miRNA expression levels but is challenged by (i) the short length of miRNAs that offers little sequence for appending detection molecules; (ii) low copy number of some miRNA; and (iii) a wide range of predicted melting temperatures (Tm) versus their DNA complementary sequences. We recently developed a microarray platform for genome-wide profiling of miRNAs (miChip) by applying locked nucleic acid (LNA)-modified capture probes. Here, we provide detailed protocols for the generation of the miChip microarray platform, the preparation and fluorescent labeling of small RNA containing total RNA, its hybridization to the immobilized LNA-modified capture probes and the post-hybridization handling of the microarray. Starting from the intact tissue sample, the entire protocol takes 3 d to yield highly accurate and sensitive data about miRNA expression levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the miChip protocol.
Figure 2: An example of a classical miChip experiment that compares miRNA expression between human heart (Ambion FirstChoice total RNA, AM7966), brain (Ambion FirstChoice total RNA, AM7962) and liver (Ambion FirstChoice total RNA, AM7960).

Similar content being viewed by others

References

  1. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Farh, K.K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Ikeda, K. et al. Detection of the argonaute protein Ago2 and microRNAs in the RNA induced silencing complex (RISC) using a monoclonal antibody. J. Immunol. Methods 317, 38–44 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gregory, R.I., Chendrimada, T.P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, C.Z., Li, L., Lodish, H.F. & Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Naguibneva, I. et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat. Cell Biol. 8, 278–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Thompson, B.J. & Cohen, S.M. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102, 13944–13949 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309, 1577–1581 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Cai, X. et al. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. USA 102, 5570–5575 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nat. Methods 2, 269–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bandres, E. et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol. Cancer 5, 29 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bottoni, A. et al. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J. Cell Physiol. 210, 370–377 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. He, H. et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. USA 102, 19075–19080 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hossain, A., Kuo, M.T. & Saunders, G.F. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol. Cell Biol. 26, 8191–8201 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Venturini, L. et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 109, 4399–4405 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Debernardi, S. et al. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21, 912–916 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Sun, G., Li, H. & Rossi, J.J. Cloning and detecting signature MicroRNAs from mammalian cells. Methods Enzymol. 427, 123–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Griffiths-Jones, S. miRBase: the microRNA sequence database. Methods Mol. Biol. 342, 129–138 (2006).

    CAS  PubMed  Google Scholar 

  20. Schmittgen, T.D., Jiang, J., Liu, Q. & Yang, L. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res. 32, e43 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goff, L.A. et al. Rational probe optimization and enhanced detection strategy for microRNAs using microarrays. RNA Biol. 2, 93–100 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Castoldi, M. et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12, 913–920 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castoldi, M., Benes, V., Hentze, M.W. & Muckenthaler, M.U. miChip: a microarray platform for expression profiling of microRNAs based on locked nucleic acid (LNA) oligonucleotide capture probes. Methods 43, 146–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Vester, B. & Wengel, J. LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43, 13233–13241 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Valoczi, A. et al. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 32, e175 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miska, E.A. et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 5, R68 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fare, T.L. et al. Effects of atmospheric ozone on microarray data quality. Anal. Chem. 75, 4672–4675 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Chang, J. et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 1, 106–113 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Cancer Research Net grant (BMBF (NGFN) 201GS0450) to M.W.H. and M.U.M. Mirco Castoldi is supported by an Excellence Fellowship of The Medical Faculty of the University of Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina U Muckenthaler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castoldi, M., Schmidt, S., Benes, V. et al. miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc 3, 321–329 (2008). https://doi.org/10.1038/nprot.2008.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.4

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing