Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Chemical genetic screening in the zebrafish embryo

Abstract

Chemical genetic screening can be described as a discovery approach in which chemicals are assayed for their effects on a defined biological system. The zebrafish, Danio rerio, is a well-characterized and genetically tractable vertebrate model organism that produces large numbers of rapidly developing embryos that develop externally. These characteristics allow for flexible, rapid and scalable chemical screen design using the zebrafish. We describe a protocol for screening compounds from a chemical library for effects on early zebrafish development using an automated in situ based read-out. As screenings are carried out in the context of a complete, developing organism, this approach allows for a more comprehensive analysis of the range of a chemical's effects than that provided by, for example, a cell culture-based or in vitro biochemical assay. Using a 24-h chemical treatment, one can complete a round of screening in 6 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In situ hybridization (ISH) for hematopoietic stem cell (HSC) markers.
Figure 2: Flow diagram showing the overview of the protocol.
Figure 3: Evidence of chemical toxicity in zebrafish embryos.

Similar content being viewed by others

References

  1. Frese, K.K. & Tuveson, D.A. Maximizing mouse cancer models. Nat. Rev. Cancer 7, 645–658 (2007).

    Article  CAS  Google Scholar 

  2. Elliott, D.A. & Brand, A.H. The GAL4 system: a versatile system for the expression of genes. Methods Mol. Biol. 420, 79–95 (2008).

    Article  CAS  Google Scholar 

  3. Martin, B.L. & Kimelman, D. Regulation of canonical Wnt signaling by Brachyury is essential for posterior mesoderm formation. Dev. Cell 15, 121–133 (2008).

    Article  CAS  Google Scholar 

  4. Chen, C.M. & Struhl, G. Wingless transduction by the Frizzled and Frizzled2 proteins of Drosophila. Development 126, 5441–5452 (1999).

    CAS  PubMed  Google Scholar 

  5. Chen, J.K., Taipale, J., Young, K.E., Maiti, T. & Beachy, P.A. Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. USA 99, 14071–14076 (2002).

    Article  CAS  Google Scholar 

  6. Frank-Kamenetsky, M . et al. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J. Biol. 1, 10 (2002).

    Article  Google Scholar 

  7. Jiang, X. et al. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 299, 223–226 (2003).

    Article  CAS  Google Scholar 

  8. Rosania, G.R. et al. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat. Biotechnol. 18, 304–308 (2000).

    Article  CAS  Google Scholar 

  9. Wu, X., Ding, S., Ding, Q., Gray, N.S. & Schultz, P.G. A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J. Am. Chem. Soc. 124, 14520–14521 (2002).

    Article  CAS  Google Scholar 

  10. Druker, B.J. & Lydon, N.B. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J. Clin. Invest. 105, 3–7 (2000).

    Article  CAS  Google Scholar 

  11. Lokey, R.S. Forward chemical genetics: progress and obstacles on the path to a new pharmacopoeia. Curr. Opin. Chem. Biol. 7, 91–96 (2003).

    Article  CAS  Google Scholar 

  12. Stern, H.M. et al. Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nat. Chem. Biol. 1, 366–70 (2005).

    Article  CAS  Google Scholar 

  13. Murphey, R.D., Stern, H.M., Straub, C.T. & Zon, L.I. A chemical genetic screen for cell cycle inhibitors in zebrafish embryos. Chem. Biol. Drug Des. 68, 213–219 (2006).

    Article  CAS  Google Scholar 

  14. North, T.E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    Article  CAS  Google Scholar 

  15. Lieschke, G.J. & Currie, P.D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353–367 (2007).

    Article  CAS  Google Scholar 

  16. Peterson, R.T., Link, B.A., Dowling, J.E. & Schreiber, S.L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. USA 97, 12965–12969 (2000).

    Article  CAS  Google Scholar 

  17. Yang, C. & Johnson, S.L. Small molecule-induced ablation and subsequent regeneration of larval zebrafish melanocytes. Development 133, 3563–3573 (2006).

    Article  CAS  Google Scholar 

  18. Yang, C., Hindes, A.E., Hultman, K.A. & Johnson, S.L. Mutations in gfpt1 and skiv2l2 cause distinct stage-specific defects in larval melanocyte regeneration in zebrafish. PLoS Genet. 3, e88 (2007).

    Article  Google Scholar 

  19. Peterson, R.T. et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat. Biotechnol. 22, 595–599 (2004).

    Article  CAS  Google Scholar 

  20. Goessling, W. et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136, 1136–1147 (2009).

    Article  CAS  Google Scholar 

  21. Yeh, J.J. et al. Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat. Chem. Biol. 5, 236–243 (2009).

    Article  CAS  Google Scholar 

  22. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  Google Scholar 

  23. Mayer, T.U. Chemical genetics: tailoring tools for cell biology. Trends Cell Biol. 13, 270–277 (2003).

    Article  CAS  Google Scholar 

  24. Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69 (2008).

    Article  CAS  Google Scholar 

  25. Engel, T. Basic overview of chemoinformatics. J. Chem. Inf. Model 46, 2267–2277 (2006).

    Article  CAS  Google Scholar 

  26. Vogt, A. et al. Automated image-based phenotypic analysis in zebrafish embryos. Dev. Dyn. 238, 656–663 (2009).

    Article  Google Scholar 

  27. Molina, G.A., Watkins, S.C. & Tsang, M. Generation of FGF reporter transgenic zebrafish and their utility in chemical screens. BMC Dev. Biol. 7, 62 (2007).

    Article  Google Scholar 

  28. Yu, P.B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33–41 (2008).

    Article  CAS  Google Scholar 

  29. Owens, K.N. et al. Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet. 4, e1000020 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. North and W. Goessling for use of runx1/cmyb in situ figures. We thank S. Datta and P. Manos for informative discussions. Thanks to C. Mosimann and J. Dejong for critical reading of the manuscript. C.K.K. is supported by NIH grant 5T32CA09172-34. R.M.W. is supported by NIH grant 1K08AR055368.

Author information

Authors and Affiliations

Authors

Contributions

C.K.K. and R.M.W. contributed equally to this work and worked under the guidance and direction of L.Z.

Corresponding author

Correspondence to Leonard Zon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufman, C., White, R. & Zon, L. Chemical genetic screening in the zebrafish embryo. Nat Protoc 4, 1422–1432 (2009). https://doi.org/10.1038/nprot.2009.144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.144

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing