Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia

Abstract

Blood vessel growth in adult organisms involves the following two fundamental processes: angiogenesis, the proliferation and extension of capillary networks; and arteriogenesis, the growth of functional arteries. We provide a protocol for the evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Surgical ligation of the femoral artery at a specific site triggers arteriogenesis of small, pre-existing collateral arteries into functional conduit vessels proximally and ischemic angiogenesis distally. The vascular response to hind-limb ischemia can be readily evaluated by laser Doppler-based perfusion measurements, histological quantification of arteriogenesis and angiogenesis or whole-mount visualization of arteries in limb muscles. Depending on the experimental design, the protocol takes between 4 and 29 d to complete; however, the net working time is about 2 d per mouse. The concurrent and specific analysis of postnatal angiogenesis and arteriogenesis in the same animal is a unique feature of the protocol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow chart outlining the modular nature of the protocol.
Figure 2: Anatomy of the right mouse hind limb, ventral aspect.
Figure 3: Right femoral artery ligation.
Figure 4: Laser Doppler imaging (LDI).
Figure 5: Tissue harvesting.
Figure 6: Tissue embedding for histologic analysis.
Figure 7: Histological evaluation of arteriogenesis.
Figure 8: Laser Doppler imaging (LDI) perfusion measurements.
Figure 9: Histological assessment of arteriogenesis.
Figure 10: Evaluation of necrosis and angiogenesis day 7 after hind-limb ischemia.
Figure 11: Whole-mount visualization of hind-limb arteries by pigment particle perfusion.

Similar content being viewed by others

References

  1. World Health Organization. in Fact sheet No. 317 Feb. 2007 (World Health Organization, 2007) (http://www.who.int/mediacentre/factsheets/fs317/en/index.html).

  2. Adams, R.H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell. Biol. 8, 464–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9, 653–660 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Schaper, W. Collateral circulation: past and present. Basic Res. Cardiol. 104, 5–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heil, M. & Schaper, W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ. Res. 95, 449–458 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Heil, M., Eitenmuller, I., Schmitz-Rixen, T. & Schaper, W. Arteriogenesis versus angiogenesis: similarities and differences. J. Cell. Mol. Med. 10, 45–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Eitenmuller, I. et al. The range of adaptation by collateral vessels after femoral artery occlusion. Circ. Res. 99, 656–662 (2006).

    Article  PubMed  Google Scholar 

  9. Limbourg, A. et al. Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ. Res. 100, 363–371 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Schaper, W., Jageneau, A. & Xhonneux, R. The development of collateral circulation in the pig and dog heart. Cardiologia 51, 321–335 (1967).

    Article  CAS  PubMed  Google Scholar 

  11. Arras, M. et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101, 40–50 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jacobi, J. et al. Adenoviral gene transfer with soluble vascular endothelial growth factor receptors impairs angiogenesis and perfusion in a murine model of hindlimb ischemia. Circulation 110, 2424–2429 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Kondoh, K. et al. Conduction performance of collateral vessels induced by vascular endothelial growth factor or basic fibroblast growth factor. Cardiovasc. Res. 61, 132–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Ziegelhoeffer, T. et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res. 94, 230–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Scholz, D. et al. Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J. Mol. Cell. Cardiol. 34, 775–787 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Simons, M. Angiogenesis: where do we stand now? Circulation 111, 1556–1566 (2005).

    Article  PubMed  Google Scholar 

  17. Simons, M. & Ware, J.A. Therapeutic angiogenesis in cardiovascular disease. Nat. Rev. Drug Discov. 2, 863–871 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Couffinhal, T. et al. Mouse model of angiogenesis. Am. J. Pathol. 152, 1667–1679 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Niiyama, H., Huang, N.F., Rollins, M.D. & Cooke, J.P. Murine model of hindlimb ischemia. J. Vis. Exp. 23 (2009) (http://www.jove.com/index/details.stp?id=1035,doi:10.3791/1035).

  20. Hedrich, H. The Laboratory Mouse. (Elsevier Academic Press, New York, 2004), 120–133.

    Google Scholar 

  21. Hirsch, A.T. et al. ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): executive summary a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease) endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. J. Am. Coll. Cardiol. 47, 1239–1312 (2006).

    Article  PubMed  Google Scholar 

  22. Jakobsson, A. & Nilsson, G.E. Prediction of sampling depth and photon path length in laser Doppler flowmetry. Med. Biol. Eng. Comput. 31, 301–307 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Chalothorn, D., Clayton, J.A., Zhang, H., Pomp, D. & Faber, J.E. Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiol. Genomics 30, 179–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Helisch, A. et al. Impact of mouse strain differences in innate hindlimb collateral vasculature. Arterioscler. Thromb. Vasc. Biol. 26, 520–526 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Cotran, R.S., Robbins, S.L. & Kumar, V. In Robbins Pathologic Basis of Disease, 5th edn. (eds. Cotran, R.S, Robbins, S.L. and Kumar, V.) 1–34 (W.B. Saunders, Philadelphia, PA, 1994).

    Google Scholar 

  26. Demicheva, E., Hecker, M. & Korff, T. Stretch-induced activation of the transcription factor activator protein-1 controls monocyte chemoattractant protein-1 expression during arteriogenesis. Circ. Res. 103, 477–484 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Schierling, W. et al. Increased intravascular flow rate triggers cerebral arteriogenesis. J. Cereb. Blood Flow Metab. 29, 726–737 (2009).

    Article  PubMed  Google Scholar 

  28. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell. Biol. 161, 1163–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McDonald, A.G., Yang, K., Roberts, H.R., Monroe, D.M. & Hoffman, M. Perivascular tissue factor is down-regulated following cutaneous wounding: implications for bleeding in hemophilia. Blood 111, 2046–2048 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Brazelton, T.R. & Blau, H.M. Optimizing techniques for tracking transplanted stem cells in vivo . Stem Cells 23, 1251–1265 (2005).

    Article  PubMed  Google Scholar 

  31. Spalteholz, W. Ueber das Durchsichtigmachen von menschlichen und tierischen Präparaten und seine theoretischen Bedingungen; nebst Anhang: Ueber Knochenfärbung 2nd edn., erweiterte Aufl. (Hirzel, Leipzig, Germany, 1914).

  32. Denk, H., Künzle, H., Plenk, H., Rüschoss, J. & Sellner, W. In Mikroskopische Technik 17th edn. (eds. Romeis, B. & Boeck, P.) 235–236 (Urban & Schwarzenberg, München, Baltimore, 1989).

    Google Scholar 

Download references

Acknowledgements

This work is supported by funds from the Deutsche Forschungsgemeinschaft (German Excellence Cluster Rebirth and DFG Li948/4-1) to FPL and from the Bundesministerium für Bildung und Forschung (IFB-Tx) to AL.

Author information

Authors and Affiliations

Authors

Contributions

A.L., T.K. and L.C.N. designed and carried out the experiments and prepared the manuscript; W.S. and H.D. advised in experiments and edited the manuscript; and F.P.L. designed experiments, analyzed data and prepared the manuscript.

Corresponding author

Correspondence to Anne Limbourg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limbourg, A., Korff, T., Napp, L. et al. Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nat Protoc 4, 1737–1748 (2009). https://doi.org/10.1038/nprot.2009.185

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.185

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing