Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Thinned-skull cranial window technique for long-term imaging of the cortex in live mice

Abstract

Imaging neurons, glia and vasculature in the living brain has become an important experimental tool for understanding how the brain works. Here we describe in detail a protocol for imaging cortical structures at high optical resolution through a thinned-skull cranial window in live mice using two-photon laser scanning microscopy (TPLSM). Surgery can be performed within 30–45 min and images can be acquired immediately thereafter. The procedure can be repeated multiple times allowing longitudinal imaging of the cortex over intervals ranging from days to years. Imaging through a thinned-skull cranial window avoids exposure of the meninges and the cortex, thus providing a minimally invasive approach for studying structural and functional changes of cells under normal and pathological conditions in the living brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of thinned-skull preparation.
Figure 2: Long-term transcranial two-photon laser scanning microscopy (TPLSM) imaging of fine neuronal structures.
Figure 3: Transcranial two-photon laser scanning microscopy (TPLSM) imaging of enhanced green fluorescent protein (EGFP) labeled microglia and cortical vasculature.

Similar content being viewed by others

References

  1. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo . Nat. Neurosci. 8, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Grutzendler, J., Kasthuri, N. & Gan, W.B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Majewska, A.K., Newton, J.R. & Sur, M. Remodeling of synaptic structure in sensory cortical areas in vivo . J. Neurosci. 26, 3021–3029 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nishiyama, H., Fukaya, M., Watanabe, M. & Linden, D.J. Axonal motility and its modulation by activity are branch-type specific in the intact adult cerebellum. Neuron 56, 472–487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsai, J., Grutzendler, J., Duff, K. & Gan, W.B. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat. Neurosci. 7, 1181–1183 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Xu, H.T., Pan, F., Yang, G. & Gan, W.B. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat. Neurosci. 10, 549–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Yoder, E.J. & Kleinfeld, D. Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy. Microsc. Res. Tech. 56, 304–305 (2002).

    Article  PubMed  Google Scholar 

  9. Zhang, Z.G. et al. A model of mini-embolic stroke offers measurements of the neurovascular unit response in the living mouse. Stroke 36, 2701–2704 (2005).

    Article  PubMed  Google Scholar 

  10. Zuo, Y., Lin, A., Chang, P. & Gan, W.B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Zuo, Y., Yang, G., Kwon, E. & Gan, W.B. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436, 261–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, J.V., Kang, S.S., Dustin, M.L. & McGavern, D.B. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457, 191–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Wake, H., Moorhouse, A.J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haynes, S.E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Theer, P., Hasan, M.T. & Denk, W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 28, 1022–1024 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Wu, S.H. et al. Ankyrin repeat-rich membrane spanning/Kidins220 protein regulates dendritic branching and spine stability in vivo . Dev. Neurobiol. 69, 547–557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, S. & Murphy, T.H. Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo . PLoS Biol. 5, e119 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Christie, R.H. et al. Growth arrest of individual senile plaques in a model of Alzheimer's disease observed by in vivo multiphoton microscopy. J. Neurosci. 21, 858–864 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yan, P. et al. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J. Neurosci. 29, 10706–10714 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Masino, S.A., Kwon, M.C., Dory, Y. & Frostig, R.D. Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc. Natl. Acad. Sci. USA 90, 9998–10002 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Helm, P.J., Ottersen, O.P. & Nase, G. Analysis of optical properties of the mouse cranium—implications for in vivo multi photon laser scanning microscopy. J. Neurosci. Methods 178, 316–322 (2009).

    Article  PubMed  Google Scholar 

  23. Holtmaat, A., Wilbrecht, L., Knott, G.W., Welker, E. & Svoboda, K. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441, 979–983 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Holtmaat, A.J. et al. Transient and persistent dendritic spines in the neocortex in vivo . Neuron 45, 279–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. De Paola, V. et al. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 49, 861–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Hofer, S.B., Mrsic-Flogel, T.D., Bonhoeffer, T. & Hubener, M. Experience leaves a lasting structural trace in cortical circuits. Nature 457, 313–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Keck, T. et al. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat. Neurosci. 11, 1162–1167 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, W.C. et al. Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex. PLoS Biol. 4, e29 (2006).

    Article  PubMed  Google Scholar 

  31. Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhatt, D.H., Zhang, S. & Gan, W.B. Dendritic spine dynamics. Annu. Rev. Physiol. 71, 261–282 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Meyer, M.P., Niell, C.M. & Smith, S.J. Brain imaging: how stable are synaptic connections? Curr. Biol. 13, R180–R182 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Ottersen, O.P. & Helm, P.J. How hardwired is the brain? Nature 420, 751–752 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spires, T.L. et al. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J. Neurosci. 25, 7278–7287 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health to W.-B.G. and J.G. as well as an Ellison Medical Foundation/AFAR Postdoctoral Fellowship to G.Y.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development/improvement of the thinned-skull imaging technique and the manuscript preparation. G.Y. wrote the initial draft and made the figures. F.P. obtained the movie of imaging through a thinned-skull preparation. C.P. conducted microglia-imaging experiment. J.G. and W.G. were responsible for the initial development of the thinned-skull imaging approach. G.Y. and F.P. improved the technique.

Corresponding authors

Correspondence to Jaime Grutzendler or Wen-Biao Gan.

Supplementary information

Supplementary Figure 1 | Home made head immobilization device.

Head immobilization device includes a custom built plate and a skull holder. The custom built plate was made of a 14×10×0.1 cm aluminum plate, two 18×18×18 mm aluminum blocks, two ¼ inch screws and two spacers. The skull holder was made of 3 to 4 double-edge shaving blades. All experiments using animals were carried out under institutional and national guidelines. (PDF 228 kb)

Supplementary Figure 2 | The dendrites and spines can be clearly visualized on a conventional fluorescence microscope after proper thinning of the skull.

(a-c) Images taken from a CCD camera equipped on a fluorescence microscope. Arrows indicate the spines located in the focal plane of the camera. Structures that were out of focus appear blurred in these images. Scale bar, 10 µm. All experiments using animals were carried out under institutional and national guidelines. (PDF 99 kb)

Supplementary Movie 1

Neuronal structures imaged at high resolution through a thinned-skull window in 1-month old YFP-H mice. The whole movie is an image stack of optical sections that span the thinned skull (20 µm in thickness), meningeal layers and neuronal structures within the first 100 µm under the pial surface. The imaged region is 66.6 µm × 66.6 µm and step size is 0.75 µm. The movie is played at a speed of 8 frames (6 µm) per second. Note there is a 20 µm space between the skull and the pial surface representing the subarachnoid space. This space is not well visualized when the skull is depressed during the thinning process. All experiments using animals were carried out under institutional and national guidelines. (MOV 3998 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G., Pan, F., Parkhurst, C. et al. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5, 201–208 (2010). https://doi.org/10.1038/nprot.2009.222

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.222

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing