Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantitative RT-PCR gene expression analysis of laser microdissected tissue samples

Abstract

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is a valuable tool for measuring gene expression in biological samples. However, unique challenges are encountered when studies are performed on cells microdissected from tissues derived from animal models or the clinic, including specimen-related issues, variability of RNA template quality and quantity, and normalization. qRT-PCR using small amounts of mRNA derived from dissected cell populations requires adaptation of standard methods to allow meaningful comparisons across sample sets. The protocol described here presents the rationale, technical steps, normalization strategy and data analysis necessary to generate reliable gene expression measurements of transcripts from dissected samples. The entire protocol from tissue microdissection through qRT-PCR analysis requires 16 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue sectioning and staining flowchart.
Figure 2: Frozen prostate epithelium laser capture microdissection (LCM) procurement sequence.
Figure 3: qRT-PCR from microdissected tissue process flowchart.
Figure 4: Dedicated RT-PCR hood setup.
Figure 5: Example qPCR 96-well setup.
Figure 6: Typical TaqMan qPCR amplification plots for 96-well setup.

Similar content being viewed by others

References

  1. Best, C.J. et al. Molecular differentiation of high- and moderate-grade human prostate cancer by cDNA microarray analysis. Diagn. Mol. Pathol. 12, 63–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Best, C.J. et al. Molecular alterations in primary prostate cancer after androgen ablation therapy. Clin. Cancer Res. 11, 6823–6834 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Best, C.J. & Emmert-Buck, M.R. Molecular profiling of tissue samples using laser capture microdissection. Expert Rev. Mol. Diagn. 1, 53–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Richardson, A.M. et al. Global expression analysis of prostate cancer-associated stroma and epithelia. Diagn. Mol. Pathol. 16, 189–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Wiese, A.H. et al. Identification of gene signatures for invasive colorectal tumor cells. Cancer Detect. Prev. 31, 282–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, S. et al. Alterations of gene expression in the development of early hyperplastic precursors of breast cancer. Am. J. Pathol. 171, 252–262 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Turashvili, G. et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7, 55 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jaeger, J. et al. Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clin. Cancer Res. 13, 806–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Sunde, J.S. et al. Expression profiling identifies altered expression of genes that contribute to the inhibition of transforming growth factor-beta signaling in ovarian cancer. Cancer Res. 66, 8404–8412 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Dahl, E. et al. Molecular profiling of laser-microdissected matched tumor and normal breast tissue identifies karyopherin alpha2 as a potential novel prognostic marker in breast cancer. Clin. Cancer Res. 12, 3950–3960 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Tsai, M.F. et al. A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. J. Natl. Cancer Inst. 98, 825–838 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Scott, M. et al. Altered patterns of transcription of the septin gene, SEPT9, in ovarian tumorigenesis. Int. J. Cancer 118, 1325–1329 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Luzzi, V.I., Holtschlag, V. & Watson, M.A. Gene expression profiling of primary tumor cell populations using laser capture microdissection, RNA transcript amplification, and GeneChip microarrays. Methods Mol. Biol. 293, 187–207 (2005).

    CAS  PubMed  Google Scholar 

  14. Yao, F. et al. Microarray analysis of fluoro-gold labeled rat dopamine neurons harvested by laser capture microdissection. J. Neurosci. Methods 143, 95–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Chan, S. et al. The use of laser capture microdissection (LCM) and quantitative polymerase chain reaction to define thyroid hormone receptor expression in human term' placenta. Placenta 25, 758–762 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Erickson, H.S. et al. Assessment of normalization strategies for quantitative RT-PCR using microdissected tissue samples. Lab. Invest. 87, 951–962 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Ransohoff, D.F. Lessons from controversy: ovarian cancer screening and serum proteomics. J. Natl. Cancer Inst. 97, 315–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Ransohoff, D.F. Bias as a threat to the validity of cancer molecular-marker research. Nat. Rev. Cancer 5, 142–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Ransohoff, D.F. Rules of evidence for cancer molecular-marker discovery and validation. Nat. Rev. Cancer 4, 309–314 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Ransohoff, D.F., McNaughton Collins, M. & Fowler, F.J. Why is prostate cancer screening so common when the evidence is so uncertain? A system without negative feedback. Am. J. Med. 113, 663–667 (2002).

    Article  PubMed  Google Scholar 

  21. Twombly, R. Identity crisis: finding, defining, and integrating biomarkers still a challenge. J. Natl. Cancer Inst. 98, 11–12 (2006).

    Article  PubMed  Google Scholar 

  22. Compton, C. Getting to personalized cancer medicine: taking out the garbage. Cancer 110, 1641–1643 (2007).

    Article  PubMed  Google Scholar 

  23. Vaught, J.B. Biorepository and biospecimen science: a new focus for CEBP. Cancer Epidemiol. Biomarkers Prev. 15, 1572–1573 (2006).

    Article  PubMed  Google Scholar 

  24. Lin, D.W. et al. Influence of surgical manipulation on prostate gene expression: implications for molecular correlates of treatment effects and disease prognosis. J. Clin. Oncol. 24, 3763–3770 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Micke, P. et al. Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab. Invest. 86, 202–211 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Bova, G.S. et al. Optimal molecular profiling of tissue and tissue components: defining the best processing and microdissection methods for biomedical applications. Mol. Biotechnol. 29, 119–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Gillespie, J.W. et al. Molecular profiling of cancer. Toxicol. Pathol. 32 (Suppl 1): 67–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Ahram, M. et al. Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications. Proteomics 3, 413–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Perlmutter, M.A. et al. Comparison of snap freezing versus ethanol fixation for gene expression profiling of tissue specimens. J. Mol. Diagn. 6, 371–377 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leiva, I.M., Emmert-Buck, M.R. & Gillespie, J.W. Handling of clinical tissue specimens for molecular profiling studies. Curr. Issues Mol. Biol. 5, 27 (2003).

    CAS  PubMed  Google Scholar 

  31. Chuaqui, R.F. et al. Post-analysis follow-up and validation of microarray experiments. Nat. Genet. 32 (Suppl): 509–514 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Gillespie, J.W. et al. Evaluation of non-formalin tissue fixation for molecular profiling studies. Am. J. Pathol. 160, 449–457 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Emmert-Buck, M.R. et al. Molecular profiling of clinical tissues specimens: feasibility and applications. J. Mol. Diagn. 2, 60–66 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ellem, K.A. & Colter, J.S. A consideration of the ribonucleic acid depolymerase-inhibitor systems of mouse tissues. J. Cell. Comp. Physiol. 58, 267–276 (1961).

    Article  CAS  PubMed  Google Scholar 

  35. Erickson, H.S., Gillespie, J.W. & Emmert-Buck, M.R. Tissue microdissection. In Methods Mol. Biol. 424 (ed. Posch, A.) 433–448 (Humana Press, Totowa, NJ, 2008).

    Google Scholar 

  36. Espina, V. et al. Laser-capture microdissection. Nat. Protoc. 1, 586–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Emmert-Buck, M.R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Bonner, R.F. et al. Laser capture microdissection: molecular analysis of tissue. Science 278, 1481,1483 (1997).

    Article  PubMed  Google Scholar 

  39. Okuducu, A.F. et al. Influence of histochemical stains on quantitative gene expression analysis after laser-assisted microdissection. Int. J. Mol. Med. 11, 449–453 (2003).

    CAS  PubMed  Google Scholar 

  40. Rubin, M.A. Tech.Sight. Understanding disease cell by cell. Science 296, 1329–1330 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Radstrom, P. et al. Pre-PCR processing: strategies to generate PCR-compatible samples. Mol. Biotechnol. 26, 133–146 (2004).

    Article  PubMed  Google Scholar 

  42. Lefevre, J. et al. Prevalence of selective inhibition of HPV-16 DNA amplification in cervicovaginal lavages. J. Med. Virol. 72, 132–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Sunen, E. et al. Comparison of two methods for the detection of hepatitis A virus in clam samples (Tapes spp.) by reverse transcription-nested PCR. Int. J. Food Microbiol. 91, 147–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Perch-Nielsen, I.R. et al. Removal of PCR inhibitors using dielectrophoresis as a selective filter in a microsystem. Lab Chip 3, 212–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, J. et al. Development of procedures for direct extraction of Cryptosporidium DNA from water concentrates and for relief of PCR inhibitors. Appl. Environ. Microbiol. 71, 1135–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guy, R.A. et al. Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Appl. Environ. Microbiol. 69, 5178–5185 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bustin, S.A. & Nolan, T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech. 15, 155–166 (2004).

    PubMed  PubMed Central  Google Scholar 

  48. Nolan, T., Hands, R.E. & Bustin, S.A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1, 1559–1582 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Morrison, T.B., Weis, J.J. & Wittwer, C.T. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24, 954–958, 960, 962 (1998).

    CAS  PubMed  Google Scholar 

  50. Fleige, S. & Pfaffl, M.W. RNA integrity and the effect on the real-time qRT-PCR performance. Mol. Aspects Med. 27, 126–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Hilscher, C., Vahrson, W. & Dittmer, D.P. Faster quantitative real-time PCR protocols may lose sensitivity and show increased variability. Nucleic Acids Res. 33, e182 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stanley, K.K. & Szewczuk, E. Multiplexed tandem PCR: gene profiling from small amounts of RNA using SYBR Green detection. Nucleic Acids Res. 33, e180 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suslov, O. & Steindler, D.A. PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency. Nucleic Acids Res. 33, e181 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stahlberg, A. et al. Properties of the reverse transcription reaction in mRNA quantification. Clin. Chem. 50, 509–515 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Stahlberg, A., Kubista, M. & Pfaffl, M. Comparison of reverse transcriptases in gene expression analysis. Clin. Chem. 50, 1678–1680 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Lewis, F. & Maughan, N.J. Extraction of Total RNA from Formalin-Fixed Paraffin-Embedded Tissue (IUL Press, La Jolla, California, 2004).

    Google Scholar 

  57. Lekanne Deprez, R.H. et al. Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Anal. Biochem. 307, 63–69 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Vandesompele, J., De Paepe, A. & Speleman, F. Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR green I real-time RT-PCR. Anal. Biochem. 303, 95–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Simon, R. et al. Design and Analysis of DNA Microarray Investigations (Springer, New York, 2004).

    Google Scholar 

  60. Murphy, R.M. et al. Effects of creatine supplementation on housekeeping genes in human skeletal muscle using real-time RT-PCR. Physiol. Genomics 12, 163–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Khimani, A.H. et al. Housekeeping genes in cancer: normalization of array data. Biotechniques 38, 739–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Warrington, J.A. et al. Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol. Genomics 2, 143–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Ross, D.T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24, 227–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Thellin, O. et al. Housekeeping genes as internal standards: use and limits. J. Biotechnol. 75, 291–295 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Suzuki, T., Higgins, P.J. & Crawford, D.R. Control selection for RNA quantitation. Biotechniques 29, 332–337 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Aerts, J.L., Gonzales, M.I. & Topalian, S.L. Selection of appropriate control genes to assess expression of tumor antigens using real-time RT-PCR. Biotechniques 36, 84–86, 88, 90–91 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Biederman, J., Yee, J. & Cortes, P. Validation of internal control genes for gene expression analysis in diabetic glomerulosclerosis. Kidney Int. 66, 2308–2314 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Tsuji, N. et al. Selection of an internal control gene for quantitation of mRNA in colonic tissues. Anticancer Res. 22, 4173–4178 (2002).

    CAS  PubMed  Google Scholar 

  70. Gorzelniak, K. et al. Validation of endogenous controls for gene expression studies in human adipocytes and preadipocytes. Horm. Metab. Res. 33, 625–627 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, 34 (2002).

    Article  Google Scholar 

  72. Mamo, S. et al. Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro . BMC Dev. Biol. 7, 14 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mahoney, D.J. et al. Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise. Physiol. Genomics 18, 226–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Pogue-Geile, K.L. & Greenberger, J.S. Effect of the irradiated microenvironment on the expression and retrotransposition of intracisternal type A particles in hematopoietic cells. Exp. Hematol. 28, 680–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Barnard, G.F. et al. Increased expression of human ribosomal phosphoprotein P0 messenger RNA in hepatocellular carcinoma and colon carcinoma. Cancer Res. 52, 3067–3072 (1992).

    CAS  PubMed  Google Scholar 

  76. Henry, J.L., Coggin, D.L. & King, C.R. High-level expression of the ribosomal protein L19 in human breast tumors that overexpress erbB-2. Cancer Res. 53, 1403–1408 (1993).

    CAS  PubMed  Google Scholar 

  77. Vaarala, M.H. et al. Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines: confirmation of L7a and L37 over-expression in prostate-cancer tissue samples. Int. J. Cancer 78, 27–32 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Xu, L.L. et al. Quantitative expression profile of PSGR in prostate cancer. Prostate Cancer Prostatic Dis. 9, 56–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Morrison, T. et al. Nanoliter high throughput quantitative PCR. Nucleic Acids Res. 34, e123 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fink, L. et al. Real-time quantitative RT-PCR after laser-assisted cell picking. Nat. Med. 4, 1329–1333 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Tsai, W.J. et al. Real-time PCR quantification using cloned standards and multiple housekeeping genes. Protocol Online. http://www.protocol-online.org/prot/Protocols/Real-Time-PCR-Quantification-Using-Cloned-Standards-and-Multiple-Housekeeping-Genes-3467.html (2009).

  82. Canales, R.D. et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol. 24, 1115–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Schmid, H. et al. Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney Int. 64, 356–360 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Cohen, C.D. et al. Quantitative gene expression analysis in renal biopsies: a novel protocol for a high-throughput multicenter application. Kidney Int. 61, 133–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Guidi, C.J. et al. Functional interaction of the retinoblastoma and Ini1/Snf5 tumor suppressors in cell growth and pituitary tumorigenesis. Cancer Res. 66, 8076–8082 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. King, T.A. et al. Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis. Ann. Surg. Oncol. 14, 2510–2518 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciatively thank S. Gonzalez and A. Velasco (The Catholic University, Santiago, Chile) for their collaboration in providing the frozen prostate whole-mount tissue blocks used to assess normalization strategies. R.F.C. and M.R.E.-B. are Federal employee inventors on NIH patents covering LCM and xMD technologies and are entitled to receive royalty payments through the NIH Technology Transfer program. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R Emmert-Buck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erickson, H., Albert, P., Gillespie, J. et al. Quantitative RT-PCR gene expression analysis of laser microdissected tissue samples. Nat Protoc 4, 902–922 (2009). https://doi.org/10.1038/nprot.2009.61

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.61

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing