Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Feeder-dependent and feeder-independent iPS cell derivation from human and mouse adipose stem cells

Abstract

Adipose tissue is an abundantly available source of proliferative and multipotent mesenchymal stem cells with promising potential for regenerative therapeutics. We previously demonstrated that both human and mouse adipose-derived stem cells (ASCs) can be reprogrammed into induced pluripotent stem cells (iPSCs) with efficiencies higher than those that have been reported for other cell types. The ASC-derived iPSCs can be generated in a feeder-independent manner, representing a unique model to study reprogramming and an important step toward establishing a safe, clinical grade of cells for therapeutic use. In this study, we provide a detailed protocol for isolation, preparation and transformation of ASCs from fat tissue into mouse iPSCs in feeder-free conditions and human iPSCs using feeder-dependent or feeder/xenobiotic-free processes. This protocol also describes how ASCs can be used as feeder cells for maintenance of other pluripotent stem cells. ASC derivation is rapid and can be completed in <1 week, with mouse and human iPS reprogramming times averaging 1.5 and 2.5 weeks, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of ASCs in culture observed with ×40 magnification on an inverted phase-contrast microscope.
Figure 2: Derivation of mouse ASC-derived iPSCs.
Figure 3: Derivation of hASC-derived iPSCs.

Similar content being viewed by others

References

  1. Murry, C.E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Muller, R. & Lengerke, C. Patient-specific pluripotent stem cells: promises and challenges. Nat. Rev. Endocrinol. 5, 195–203 (2009).

    Article  PubMed  Google Scholar 

  3. Rodriguez-Piza, I. et al. Reprogramming of human fibroblasts to induced pluripotent stem cells under Xeno-free conditions. Stem Cells 28, 36–44 (2009).

    Google Scholar 

  4. Chidgey, A.P., Layton, D., Trounson, A. & Boyd, R.L. Tolerance strategies for stem-cell-based therapies. Nature 453, 330–337 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Martin, M.J., Muotri, A., Gage, F. & Varki, A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11, 228–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Sugarman, J. Human stem cell ethics: beyond the embryo. Cell Stem Cell 2, 529–533 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Sugii, S. et al. Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc. Natl. Acad. Sci. USA 107, 3558–3563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tontonoz, P. & Spiegelman, B.M. Fat and beyond: the diverse biology of PPARgamma. Annu. Rev. Biochem. 77, 289–312 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Sugii, S. et al. PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization. Proc. Natl. Acad. Sci. USA 106, 22504–22509 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zeve, D., Tang, W. & Graff, J. Fighting fat with fat: the expanding field of adipose stem cells. Cell Stem Cell 5, 472–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fraser, J.K., Wulur, I., Alfonso, Z. & Hedrick, M.H. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 24, 150–154 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Gimble, J.M., Katz, A.J. & Bunnell, B.A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100, 1249–1260 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zuk, P.A. et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Schaffler, A. & Buchler, C. Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 25, 818–827 (2007).

    Article  PubMed  Google Scholar 

  15. Zuk, P.A. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279–4295 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Park, I.H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Lowry, W.E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. USA 105, 2883–2888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun, N. et al. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl. Acad. Sci. USA 106, 15720–15725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takahashi, K., Okita, K., Nakagawa, M. & Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2, 3081–3089 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Park, I.H., Lerou, P.H., Zhao, R., Huo, H. & Daley, G.Q. Generation of human-induced pluripotent stem cells. Nat. Protoc. 3, 1180–1186 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Aasen, T. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26, 1276–1284 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Aasen, T. & Belmonte, J.C. Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat. Protoc. 5, 371–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Hotta, A. & Ellis, J. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J. Cell Biochem. 105, 940–948 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Blelloch, R., Venere, M., Yen, J. & Ramalho-Santos, M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1, 245–247 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hotta, A. et al. EOS lentiviral vector selection system for human induced pluripotent stem cells. Nat. Protoc. 4, 1828–1844 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Hotta, A. et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat. Methods 6, 370–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Wernig, M. et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat. Biotechnol. 26, 916–924 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hockemeyer, D. et al. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 3, 346–353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maherali, N. et al. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3, 340–345 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou, W. & Freed, C.R. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27, 2667–2674 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Okita, K., Hong, H., Takahashi, K. & Yamanaka, S. Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat. Protoc. 5, 418–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gonzalez, F. et al. Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc. Natl. Acad. Sci. USA 106, 8918–8922 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jia, F. et al. A nonviral minicircle vector for deriving human iPS cells. Nat. Methods 7, 197–199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T. & Yamanaka, S. Promotion of direct reprogramming by transformation-deficient Myc. Proc. Natl. Acad. Sci. USA 107, 14152–14157 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kajimura, S. et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460, 1154–1158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26, 795–797 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin, T. et al. A chemical platform for improved induction of human iPSCs. Nat. Methods 6, 805–808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi, Y. et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2, 525–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Rodeheffer, M.S., Birsoy, K. & Friedman, J.M. Identification of white adipocyte progenitor cells in vivo. Cell 135, 240–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Klimanskaya, I., Chung, Y., Becker, S., Lu, S.J. & Lanza, R. Derivation of human embryonic stem cells from single blastomeres. Nat. Protoc. 2, 1963–1972 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Lerou, P.H. et al. Derivation and maintenance of human embryonic stem cells from poor-quality in vitro fertilization embryos. Nat. Protoc. 3, 923–933 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Braam, S.R. et al. Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification. Nat. Protoc. 3, 1435–1443 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Melkoumian, Z. et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat. Biotechnol. 28, 606–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Villa-Diaz, L.G. et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat. Biotechnol. 28, 581–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Estes, B.T., Diekman, B.O., Gimble, J.M. & Guilak, F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat. Protoc. 5, 1294–1311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boquest, A.C., Shahdadfar, A., Brinchmann, J.E. & Collas, P. Isolation of stromal stem cells from human adipose tissue. Methods Mol. Biol. 325, 35–46 (2006).

    PubMed  Google Scholar 

  56. Bunnell, B.A., Flaat, M., Gagliardi, C., Patel, B. & Ripoll, C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45, 115–120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boquest, A.C. et al. Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol. Biol. Cell 16, 1131–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Beutner, C., Roy, K., Linnartz, B., Napoli, I. & Neumann, H. Generation of microglial cells from mouse embryonic stem cells. Nat. Protoc. 5, 1481–1494 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Ng, E.S., Davis, R., Stanley, E.G. & Elefanty, A.G. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat. Protoc. 3, 768–776 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.M. Gimble and members of the Izpisúa Belmonte laboratory for helpful discussions, L. Ong and S. Ganley for administrative assistance and R. Yu for advice on and editing of the manuscript. This work was supported by grants from the National Institutes of Health (HD027183, DK057978 and DK062434), California Institute for Regenerative Medicine (RB2-01530) and Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and Y.K. designed and performed the experimental procedures. S.S., Y.K. and W.T.B. wrote the protocol. R.M.E. was the project leader, obtained funding, and reviewed and edited the protocol.

Corresponding author

Correspondence to Ronald M Evans.

Ethics declarations

Competing interests

The authors have filed a patent application on some of the methods described in this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugii, S., Kida, Y., Berggren, W. et al. Feeder-dependent and feeder-independent iPS cell derivation from human and mouse adipose stem cells. Nat Protoc 6, 346–358 (2011). https://doi.org/10.1038/nprot.2010.199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.199

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing