Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Testing declarative memory in laboratory rats and mice using the nonconditioned social discrimination procedure

Abstract

Testing declarative memory in laboratory rodents can provide insights into the fundamental mechanisms underlying this type of learning and memory processing, and these insights are likely to be applicable to humans. Here we provide a detailed description of the social discrimination procedure used to investigate recognition memory in rats and mice, as established during the last 20 years in our laboratory. The test is based on the use of olfactory signals for social communication in rodents; this involves a direct encounter between conspecifics, during which the investigatory behavior of the experimental subject serves as an index for learning and memory performance. The procedure is inexpensive, fast and very reliable, but it requires well-trained human observers. We include recent modifications to the procedure that allow memory extinction to be investigated by retroactive and proactive interference, and that enable the dissociated analysis of the central nervous processing of the volatile fraction of an individual's olfactory signature. Depending on the memory retention interval under study (short-term memory, intermediate-term memory, long-term memory or long-lasting memory), the protocol takes 10 min or up to several days to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the social discrimination test.
Figure 2: Impact of the gender of stimulus juveniles on the recognition performance of the experimental subjects.
Figure 3: Impact of manipulating the experimental subjects on their recognition performance.
Figure 4: Equipment setup.
Figure 5: The volatile fraction cage.
Figure 6: Schematic diagram showing the sequence of juvenile placement into the experimental subjects' cages during 'sampling' and 'choice'.
Figure 7: Representative examples showing anticipated results obtained in the social discrimination procedure.
Figure 8: Relevant behavioral parameters.

Similar content being viewed by others

References

  1. Ebbinghaus, H. Über das Gedächtnis—Untersuchungen zur experimentellen Psychologie (Duncker & Humblot, Leipzig, 1885).

  2. Schacter, D.L. Implicit memory: history and current status. J. Exp. Psychol.: Learning, Memory, and Cognition 13, 501–518 (1987).

    Google Scholar 

  3. Steckler, T., Drinkenburg, W.H., Sahgal, A. & Aggleton, J.P. Recognition memory in rats—I. Concepts and classification. Prog. Neurobiol. 54, 289–311 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Accolla, R. & Carleton, A. Internal body state influences topographical plasticity of sensory representations in the rat gustatory cortex. Proc. Natl. Acad. Sci. USA 105, 4010–4015 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. McGaugh, J.L. Make mild moments memorable: add a little arousal. Trends Cogn. Sci. 10, 345–347 (2006).

    Article  PubMed  Google Scholar 

  6. Kamprath, K. & Wotjak, C.T. Nonassociative learning processes determine expression and extinction of conditioned fear in mice. Learn Mem. 11, 770–786 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dantzer, R., Bluthe, R.M. & Kelley, K.W. Androgen-dependent vasopressinergic neurotransmission attenuates interleukin-1-induced sickness behavior. Brain Res. 557, 115–120 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Thor, D.H. & Holloway, W.R. Social memory of the male laboratory rat. J Comp. Physiol. Psychol. 96, 1000–1006 (1982).

    Article  Google Scholar 

  9. Dantzer, R., Bluthe, R.M., Koob, G.F. & Le Moal, M. Modulation of social memory in male rats by neurohypophyseal peptides. Psychopharmacology (Berl.) 91, 363–368 (1987).

    Article  CAS  Google Scholar 

  10. Engelmann, M., Wotjak, C.T. & Landgraf, R. Social discrimination procedure: an alternative method to investigate juvenile recognition abilities in rats. Physiol. Behav. 58, 315–321 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Reijmers, L.G., Leus, I.E., Burbach, J.P., Spruijt, B.M. & van Ree, J.M. Social memory in the rat: circadian variation and effect of circadian rhythm disruption. Physiol. Behav. 72, 305–309 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Sterlemann, V. et al. Chronic social stress during adolescence induces cognitive impairment in aged mice. Hippocampus 20, 540–549 (2010).

    PubMed  Google Scholar 

  13. Choleris, E. et al. Involvement of estrogen receptor alpha, beta and oxytocin in social discrimination: a detailed behavioral analysis with knockout female mice. Genes Brain Behav. 5, 528–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Macbeth, A.H., Edds, J.S. & Young, W.S. III Housing conditions and stimulus females: a robust social discrimination task for studying male rodent social recognition. Nat. Protoc. 4, 1574–1581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bluthe, R.M. & Dantzer, R. Role of the vomeronasal system in vasopressinergic modulation of social recognition in rats. Brain Res. 604, 205–210 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Noack, J. et al. Different importance of the volatile and non-volatile fractions of an olfactory signature for individual social recognition in rats versus mice and short-term versus long-term memory. Neurobiol. Learn. Mem. 94, 568–575 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Popik, P., Vetulani, J., Bisaga, A. & van Ree, J.M. Recognition cue in the rat's social memory paradigm. J. Basic Clin. Physiol. Pharmacol. 2, 315–327 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Page, D.T., Kuti, O.J. & Sur, M. Computerized assessment of social approach behavior in mouse. Front Behav. Neurosci. 3, 48 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Insel, T.R. & Fernald, R.D. How the brain processes social information: searching for the social brain. Annu. Rev. Neurosci. 27, 697–722 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Engelmann, M. Competition between two memory traces for long-term recognition memory. Neurobiol. Learn. Mem. 91, 58–65 (2009).

    Article  PubMed  Google Scholar 

  21. Squires, A.S., Peddle, R., Milway, S.J. & Harley, C.W. Cytotoxic lesions of the hippocampus do not impair social recognition memory in socially housed rats. Neurobiol. Learn. Mem. 85, 95–101 (2006).

    Article  PubMed  Google Scholar 

  22. Richter, K., Wolf, G. & Engelmann, M. Social recognition memory requires two stages of protein synthesis in mice. Learn. Mem. 12, 407–413 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wanisch, K., Wotjak, C.T. & Engelmann, M. Long-lasting second stage of recognition memory consolidation in mice. Behavioural. Brain Res. 186, 191–196 (2008).

    Article  Google Scholar 

  24. Dluzen, D.E., Muraoka, S., Engelmann, M., Ebner, K. & Landgraf, R. Oxytocin induces preservation of social recognition in male rats by activating alpha-adrenoceptors of the olfactory bulb. Eur. J. Neurosci. 12, 760–766 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Dluzen, D.E., Muraoka, S., Engelmann, M. & Landgraf, R. The effects of infusion of arginine vasopressin, oxytocin, or their antagonists into the olfactory bulb upon social recognition responses in male rats. Peptides 19, 999–1005 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Landgraf, R. et al. V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities, and anxiety-related behavior in rats. J. Neurosci. 15, 4250–4258 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Liebsch, G., Landgraf, R., Engelmann, M., Lorscher, P. & Holsboer, F. Differential behavioural effects of chronic infusion of CRH 1 and CRH 2 receptor antisense oligonucleotides into the rat brain. J. Psychiatr. Res. 33, 153–163 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Tobin, V.A. et al. An intrinsic vasopressin system in the olfactory bulb is involved in social recognition. Nature 464, 413–417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jüch, M. et al. Congenital lack of nNOS impairs long-term social recognition memory and alters the olfactory bulb proteome. Neurobiol. Learn. Mem. 92, 469–484 (2009).

    Article  PubMed  Google Scholar 

  30. Kogan, J.H., Frankland, P.W. & Silva, A.J. Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus 10, 47–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Bluthe, R.M. & Dantzer, R. Social recognition does not involve vasopressinergic neurotransmission in female rats. Brain Res. 535, 301–304 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Bluthe, R.M., Schoenen, J. & Dantzer, R. Androgen-dependent vasopressinergic neurons are involved in social recognition in rats. Brain Res. 519, 150–157 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Engelmann, M., Ebner, K., Wotjak, C.T. & Landgraf, R. Endogenous oxytocin is involved in short-term olfactory memory in female rats. Behav. Brain Res. 90, 89–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Engelmann, M. & Landgraf, R. Microdialysis administration of vasopressin into the septum improves social recognition in Brattleboro rats. Physiol. Behav. 55, 145–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez-Andrade, G. & Kendrick, K.M. Roles of alpha- and beta-estrogen receptors in mouse social recognition memory: effects of gender and the estrous cycle. Horm. Behav. 59, 114–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Terranova, J.P., Perio, A., Worms, P., Le Fur, G. & Soubrie, P. Social olfactory recognition in rodents: deterioration with age, cerebral ischaemia and septal lesion. Behav. Pharmacol. 5, 90–98 (1994).

    Article  PubMed  Google Scholar 

  37. Prediger, R.D., Batista, L.C. & Takahashi, R.N. Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats. Involvement of adenosine A1 and A2A receptors. Neurobiol. Aging 26, 957–964 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Bothe, G.W.M., Bolivar, V.J., Vedder, M.J. & Geistfeld, J.G. Behavioral differences among fourteen inbred mouse strains commonly used as disease models. Comparative Med. 55, 326–334 (2005).

    CAS  Google Scholar 

  39. Camp, M. et al. Impaired Pavlovian fear extinction is a common phenotype across genetic lineages of the 129 inbred mouse strain. Genes, Brain and Behav. 8, 744–752 (2009).

    Article  CAS  Google Scholar 

  40. Cook, M.N., Bolivar, V.J., McFadyen, M.P. & Flaherty, L. Behavioral differences among 129 substrains: implications for knockout and transgenic mice. Behav. Neurosci. 116, 600–611 (2002).

    Article  PubMed  Google Scholar 

  41. Hefner, K. et al. Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain. J. Neurosci. 28, 8074–8085 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Owen, E.H., Logue, S.F., Rasmussen, D.L. & Wehner, J.M. Assessment of learning by the Morris water task and fear conditioning in inbred mouse strains and F1 hybrids: implications of genetic background for single gene mutations and quantitative trait loci analyses. Neuroscience 80, 1087–1099 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Simpson, E.M. et al. Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat. Genet. 16, 19–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Thor, D.H. Testosterone and persistence of social investigation in laboratory rats. J. Comp. Physiol. Psychol. 94, 970–976 (1980).

    Article  CAS  PubMed  Google Scholar 

  45. Bluthe, R.M., Gheusi, G. & Dantzer, R. Gonadal steroids influence the involvement of arginine vasopressin in social recognition in mice. Psychoneuroendocrinology 18, 323–335 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Prediger, R.D., Fernandes, D. & Takahashi, R.N. Blockade of adenosine A2A receptors reverses short-term social memory impairments in spontaneously hypertensive rats. Behav. Brain Res. 159, 197–205 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Müller, G.E. & Pilzecker, A. Experimentelle Beiträge zur Lehre vom Gedächtnis. Zeitschrift für Psychologie und Physiologie der Sinnesorgane EB 1–300 (1900).

  48. Burman, O.H. & Mendl, M. Short-term social memory in the laboratory rat: its susceptibility to disturbance. Appl. Anim. Behav. Sci. 67, 241–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Amano, K. et al. Estimation of the timing of human visual perception from magnetoencephalography. J. Neurosci. 26, 3981–3991 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Welker, W.I. Analysis of sniffing of the albino rat. Behaviour 22, 223–244 (1964).

    Article  Google Scholar 

  51. Wesson, D.W., Donahou, T.N., Johnson, M.O. & Wachowiak, M. Sniffing behavior of mice during performance in odor-guided tasks. Chem. Senses 33, 581–596 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kimchi, T., Xu, J. & Dulac, C. A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448, 1009–1014 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Perio, A. et al. Specific modulation of social memory in rats by cholinomimetic and nootropic drugs, by benzodiazepine inverse agonists, but not by psychostimulants. Psychopharmacology (Berl.) 97, 262–268 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Murau and M. Radscheidt for expert support in behavioral testing. We also thank G. Leng, Edinburgh, for polishing the English. During the writing of this paper, the authors were supported by the Deutsche Forschungsgemeinschaft (EN 366/6-1 and EN 366/8-1).

Author information

Authors and Affiliations

Authors

Contributions

M.E. and J.N. designed the study, J.H. performed some of the behavioral experiments, and M.E. and J.N. wrote the manuscript.

Corresponding author

Correspondence to Mario Engelmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

No impact of female sex cycle on long-term social discrimination. The same group-housed female mice were tested for their social recognition abilities under estrous and non-estrous conditions at an retention interval of 24 h. The stage of the cycle was determined using microscopical analysis of vaginal smears taken 1 h after choice. Statistical analysis shows that experimental subjects successfully discriminated between the stimulus animals independently upon cyclus stage during choice. Statistics was performed using paired t-test. (JPG 329 kb)

Supplementary Fig. 2

Social discrimination is sensitive to interference phenomena. Examples showing schematically the experimental design (insets) and representative results obtained with same group-housed adult male mice as experimental subjects without (A) and with experimental induction of interference (B,C) for long-term social recognition memory. A, demonstrates intact recognition memory performance of these animals in the standard social discrimination protocol. B, Presentation of an interference juvenile (hatched) during the retention interval of 24h (6h after sampling) impairs recognition of the familiar juvenile. C, Presentation of an interference juvenile (hatched) 3h before sampling impairs recognition of the familiar juvenile at the retention interval of 21 h. Statistics was performed using paired t-test. Please note that the effect of interference is time-dependent. (JPG 533 kb)

Supplementary Fig. 3

Stimulus animal labelling. Schematic drawing showing the relative position and length of the marks used for labelling at the dorsal side of a juvenile. (JPG 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelmann, M., Hädicke, J. & Noack, J. Testing declarative memory in laboratory rats and mice using the nonconditioned social discrimination procedure. Nat Protoc 6, 1152–1162 (2011). https://doi.org/10.1038/nprot.2011.353

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.353

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing