Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Does the ribosome translate cancer?

Key Points

  • Ribosome biogenesis and translation are regulated at multiple levels and are associated with accurate cell growth and proliferation. The loss of key checkpoints during protein synthesis might contribute to the initiation and progression of cancer.

  • During specific phases of the cell cycle, the synthesis of rRNA, as well as components of the protein synthesis machinery, is initiated by the phosphorylation of key transcription factors that regulate polymerase I (Pol I) and Pol III activity, respectively. This tight link between cell-cycle progression and protein synthesis exists to ensure accurate cell growth and proliferation, which might be lost in cancer cells.

  • p53 and retinoblastoma (RB) repress Pol I and Pol III transcription. In cancer cells, which harbour inactivating mutations in these tumour suppressors, deregulation of Pol I and Pol III activity might contribute to tumorigenesis.

  • Several ribosomal proteins are overexpressed in a variety of tumours. It remains to be determined whether this represents a cause or consequence of tumour formation. Increased phosphorylation of the S6 ribosomal protein is thought to result in enhanced translation of specific mRNAs. This raises the possibility that deregulation of ribosomal proteins in tumours might affect the translation of specific target mRNAs.

  • MYC and PTEN act as master regulators of ribosome biogenesis and translation control. Their deregulation in tumour cells increases the expression and activity of components of the translation apparatus. It remains to be determined which of the downstream targets of MYC and PTEN involved in controlling protein synthesis are directly responsible for tumour susceptibility.

  • Further investigation will be needed to clarify to what extent deregulation in total or specific translation of mRNAs contributes to tumorigenesis. Although mutations in genes that are directly responsible for ribosome biogenesis, such as those encoding the ribosomal protein S19 and DKC1 (the enzyme that modifies rRNA), have been found in cancer susceptibility syndromes, the molecular mechanisms by which these proteins cause cancer remain largely unknown.

  • Components of the translation machinery that are overexpressed or deregulated in cancer cells could represent targets for cancer therapy. The macrolide rapamycin, which affects the translation machinery, has already been used in clinical trials as a tumour inhibitory agent.

Abstract

Ribosome biogenesis and translation control are essential cellular processes that are governed at numerous levels. Several tumour suppressors and proto-oncogenes have been found either to affect the formation of the mature ribosome or to regulate the activity of proteins known as translation factors. Disruption in one or more of the steps that control protein biosynthesis has been associated with alterations in the cell cycle and regulation of cell growth. Therefore, certain tumour suppressors and proto-oncogenes might regulate malignant progression by altering the protein synthesis machinery. Although many studies have correlated deregulation of protein biosynthesis with cancer, it remains to be established whether this translates directly into an increase in cancer susceptibility, and under what circumstances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of Pol I and Pol III activity by tumour suppressors and proto-oncogenes.
Figure 2: Regulation of protein synthesis by the PI3K signal-transduction pathway.
Figure 3: MYC regulates the expression of proteins involved in ribosome biogenesis and control of translation.

Similar content being viewed by others

References

  1. Gani, R. The nucleoli of cultured human lymphocytes. I. Nucleolar morphology in relation to transformation and the DNA cycle. Exp. Cell Res. 97, 249–258 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Heiss, N. S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nature Genet. 19, 32–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Ruggero, D. et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299, 259–262 (2003). In this study, animal models for dyskeratosis congenita were generated, which are hypomorphic mutants for the pseudouridine synthase, DKC1. These mice are faithful models of the disease and show marked cancer susceptibility associated with an impairment in ribosome biogenesis.

    Article  CAS  PubMed  Google Scholar 

  4. Draptchinskaia, N. et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nature Genet. 21, 169–175 (1999). Mutations in the ribosomal protein S19 were found to be associated with a disease characterized by an increased susceptibility to cancer.

    Article  CAS  PubMed  Google Scholar 

  5. Pardee, A. B. G1 events and regulation of cell proliferation. Science 246, 603–608 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Pyronnet, S. & Sonenberg, N. Cell-cycle-dependent translational control. Curr. Opin. Genet. Dev. 11, 13–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Grummt, I. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog. Nucleic Acid Res. Mol. Biol. 62, 109–154 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Grummt, I., Smith, V. A. & Grummt, F. Amino acid starvation affects the initiation frequency of nucleolar RNA polymerase. Cell 7, 439–445 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Kief, D. R. & Warner, J. R. Coordinate control of syntheses of ribosomal ribonucleic acid and ribosomal proteins during nutritional shift-up in Saccharomyces cerevisiae. Mol. Cell. Biol. 1, 1007–1015 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klein, J. & Grummt, I. Cell cycle-dependent regulation of RNA polymerase I transcription: the nucleolar transcription factor UBF is inactive in mitosis and early G1. Proc. Natl Acad. Sci. USA 96, 6096–6101 (1999). An important paper showing that UBF activity is regulated in a cell-cycle-dependent manner and that fluctuations in rRNA synthesis during the cell cycle are controlled by UBF phosphorylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cavanaugh, A. H. et al. Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature 9, 177–180 (1995). A landmark paper which shows that the tumour-suppressor gene Rb directly represses transcription of rRNA through inhibition of UBF function. There is an accumulation of Rb in the nucleolus of differentiated cells, indicating that Rb might exert some of its growth-suppressive properties by regulating rRNA synthesis.

    Article  Google Scholar 

  12. Beckmann, H., Chen, J. L., O'Brien, T. & Tjian, R. Coactivator and promoter-selective properties of RNA polymerase I TAFs. Science 270, 1506–1509 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Brandenburger, Y., Jenkins, A., Autelitano, D. J. & Hannan, R. D. Increased expression of UBF is a critical determinant for rRNA synthesis and hypertrophic growth of cardiac myocytes. FASEB J. 15, 2051–2053 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Bell, S. P., Learned, R. M., Jantzen, H. M. & Tjian, R. Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 241, 1192–1197 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. antzen, H. M., Admon, A., Bell, S. P. & Tjian, R. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 344, 830–836 (1990).

    Article  Google Scholar 

  16. Read, C. et al. High resolution studies of the Xenopus laevis ribosomal gene promoter in vivo and in vitro. J. Biol. Chem. 267, 10961–10967 (1992).

    CAS  PubMed  Google Scholar 

  17. Voit, R., Hoffmann, M. & Grummt, I. Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J. 18, 1891–1899 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kihm, A. J., Hershey, J. C., Haystead, T. A., Madsen, C. S. & Owens, G. K. Phosphorylation of the rRNA transcription factor upstream binding factor promotes its association with TATA binding protein. Proc. Natl Acad. Sci. USA 95, 14816–14820 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tuan, J. C., Zhai, W. & Comai, L. Recruitment of TATA-binding protein-TAFI complex SL1 to the human ribosomal DNA promoter is mediated by the carboxy-terminal activation domain of upstream binding factor (UBF) and is regulated by UBF phosphorylation. Mol. Cell. Biol. 19, 2872–2879 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Voit, R. & Grummt, I. Phosphorylation of UBF at serine 388 is required for interaction with RNA polymerase I and activation of rDNA transcription. Proc. Natl Acad. Sci. USA 98, 13631–13636 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stefanovsky, V. Y. et al. An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol. Cell 8, 1063–1073 (2001). The study shows that the activation of the ERK1/2 MAP kinases by growth factors leads to rRNA transcription through a mechanism that is dependent on UBF phosphorylation. This study provides a link between growth-factor signalling and increased ribosome production.

    Article  CAS  PubMed  Google Scholar 

  22. O'Mahony, D. J., Xie, W. Q., Smith, S. D., Singer, H. A. & Rothblum, L. I. Differential phosphorylation and localization of the transcription factor UBF in vivo in response to serum deprivation. In vitro dephosphorylation of UBF reduces its transactivation properties. J. Biol. Chem. 267, 35–38 (1992).

    CAS  PubMed  Google Scholar 

  23. Voit, R. et al. The nucleolar transcription factor mUBF is phosphorylated by casein kinase II in the C-terminal hyperacidic tail which is essential for transactivation. EMBO J. 11, 2211–2218 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Voit, R., Kuhn, A., Sander, E. E. & Grummt, I. Activation of mammalian ribosomal gene transcription requires phosphorylation of the nucleolar transcription factor UBF. Nucleic Acids Res. 23, 2593–2599 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, T. C. et al. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369, 669–671 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Bortner, D. M. & Rosenberg, M. P. Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol. Cell. Biol. 17, 453–459 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Navolanic, P. M., Steelman, L. S. & McCubrey, J. A. EGFR family signaling and its association with breast cancer development and resistance to chemotherapy. Int. J. Oncol. 22, 237–252 (2003).

    CAS  PubMed  Google Scholar 

  28. Cavanaugh, A. H. et al. Rrn3 phosphorylation is a regulatory checkpoint for ribosome biogenesis. J. Biol. Chem. 277, 27423–27432 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Yuan, X., Zhao, J., Zentgraf, H., Hoffmann-Rohrer, U. & Grummt, I. Multiple interactions between RNA polymerase I, TIF-IA and TAFI subunits regulate preinitiation complex assembly at the ribosomal gene promoter. EMBO Rep. 3, 1082–1087 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Classon, M. & Harlow, E. The retinoblastoma tumour suppressor in development and cancer. Nature Rev. Cancer 2, 910–917 (2002).

    Article  CAS  Google Scholar 

  31. Voit, R., Schafer, K. & Grummt, I. Mechanism of repression of RNA polymerase I transcription by the retinoblastoma protein. Mol. Cell. Biol. 17, 4230–4237 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hannan, K. M. et al. Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1. Oncogene 19, 4988–4999 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Ciarmatori, S. et al. Overlapping functions of the pRb family in the regulation of rRNA synthesis. Mol. Cell. Biol. 21, 5806–5814 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hannan, K. M. et al. RNA polymerase I transcription in confluent cells: Rb downregulates rDNA transcription during confluence-induced cell cycle arrest. Oncogene 19, 3487–3497 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Zhai, W. & Comai, L. Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol. Cell. Biol. 20, 5930–5938 (2000). Shows that the tumour suppressor p53 can directly regulate rRNA synthesis through its interaction with UBF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cordon-Cardo, C. et al. Cooperative effects of p53 and pRB alterations in primary superficial bladder tumors. Cancer Res. 57, 1217–1221 (1997).

    CAS  PubMed  Google Scholar 

  37. White, R. J., Trouche, D., Martin, K., Jackson, S. P. & Kouzarides, T. Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 382, 88–90 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Sutcliffe, J. E., Brown, T. R., Allison, S. J., Scott, P. H. & White, R. J. Retinoblastoma protein disrupts interactions required for RNA polymerase III transcription. Mol. Cell. Biol. 20, 9192–9202 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cairns, C. A. & White, R. J. p53 is a general repressor of RNA polymerase III transcription. EMBO J. 17, 3112–3123 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaye, F. J., Kratzke, R. A., Gerster, J. L. & Horowitz, J. M. A single amino acid substitution results in a retinoblastoma protein defective in phosphorylation and oncoprotein binding. Proc. Natl Acad. Sci. USA 87, 6922–6926 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Larminie, C. G., Alzuherri, H. M., Cairns, C. A., McLees, A. & White, R. J. Transcription by RNA polymerases I and III: a potential link between cell growth, protein synthesis and the retinoblastoma protein. J. Mol. Med. 76, 94–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Johnson, L. F., Williams, J. G., Abelson, H. T., Green, H. & Penman, S. Changes in RNA in relation to growth of the fibroblast. III. Posttranscriptional regulation of mRNA formation in resting and growing cells. Cell 4, 69–75 (1975).

    Article  CAS  PubMed  Google Scholar 

  43. Baxter, G. C. & Stanners, C. P. The effect of protein degradation on cellular growth characteristics. J. Cell. Physiol. 96, 139–145 (1978).

    Article  CAS  PubMed  Google Scholar 

  44. Frank, D. J., Edgar, B. A. & Roth, M. B. The Drosophila melanogaster gene brain tumor negatively regulates cell growth and ribosomal RNA synthesis. Development 129, 399–407 (2002).

    CAS  PubMed  Google Scholar 

  45. Frank, D. J. & Roth, M. B. ncl-1 is required for the regulation of cell size and ribosomal RNA synthesis in Caenorhabditis elegans. J. Cell Biol. 140, 1321–1329 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fatica, A. & Tollervey, D. Making ribosomes. Curr. Opin. Cell. Biol. 14, 313–318 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Draper, D. E. & Reynaldo, L. P. RNA binding strategies of ribosomal proteins. Nucleic Acids Res. 27, 381–388 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maguire, B. A. & Zimmermann, R. A. The ribosome in focus. Cell 104, 813–816 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 108, 557–572 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Ferrari, S. et al. Noncoordinated expression of S6, S11, and S14 ribosomal protein genes in leukemic blast cells. Cancer Res. 50, 5825–5828 (1990).

    CAS  PubMed  Google Scholar 

  51. Loging, W. T. & Reisman, D. Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53. Cancer Epidemiol. Biomarkers Prev. 8, 1011–1016 (1999).

    CAS  PubMed  Google Scholar 

  52. Kondoh, N. et al. Enhanced expression of S8, L12, L23a, L27 and L30 ribosomal protein mRNAs in human hepatocellular carcinoma. Anticancer Res. 21, 2429–2433 (2001).

    CAS  PubMed  Google Scholar 

  53. Zhang, L. et al. Gene expression profiles in normal and cancer cells. Science 276, 1268–1272 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Alon, U. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA 96, 6745–6750 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Uechi, T., Tanaka, T. & Kenmochi, N. A complete map of the human ribosomal protein genes: assignment of 80 genes to the cytogenetic map and implications for human disorders. Genomics 72, 223–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Bassoe, C. F., Bruserud, O., Pryme, I. F. & Vedeler, A. Ribosomal proteins sustain morphology, function and phenotype in acute myeloid leukemia blasts. Leuk. Res. 22, 329–339 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Ferrari, S. et al. Abundance of the primary transcript and its processed product of growth-related genes in normal and leukemic cells during proliferation and differentiation. Cancer Res. 52, 11–16 (1992).

    CAS  PubMed  Google Scholar 

  58. Warner, J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Rotenberg, M. O., Moritz, M. & Woolford, J. L. Jr. Depletion of Saccharomyces cerevisiae ribosomal protein L16 causes a decrease in 60S ribosomal subunits and formation of half-mer polyribosomes. Genes Dev. 2, 160–172 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Kongsuwan, K. et al. A Drosophila Minute gene encodes a ribosomal protein. Nature 317, 555–558 (1985).

    Article  CAS  PubMed  Google Scholar 

  61. Kay, M. A. & Jacobs-Lorena, M. Developmental genetics of ribosome synthesis in Drosophila. Trends Genet. 3, 347–351 (1987).

    Article  CAS  Google Scholar 

  62. Volarevic, S. et al. Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science 288, 2045–2047 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Terada, N. et al. Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc. Natl Acad. Sci. USA 91, 11477–11481 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jefferies, H. B., Reinhard, C., Kozma, S. C. & Thomas, G. Rapamycin selectively represses translation of the 'polypyrimidine tract' mRNA family. Proc. Natl Acad. Sci. USA 91, 4441–4445 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jefferies, H. B. et al. Rapamycin suppresses 5′ TOP mRNA translation through inhibition of p70s6k. EMBO J. 16, 3693–3704 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Meyuhas, O. & Hornstein, E. in Translational Control of Gene Expression (eds Sonenberg, N., Hershey, J. W. B. & Mathews, M. B.) (Cold Spring Harbor Laboratory Press, New York, 2000).

    Google Scholar 

  67. Anand, N. et al. Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nature Genet. 31, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Thomas, G., Siegmann, M. & Gordon, J. Multiple phosphorylation of ribosomal protein S6 during transition of quiescent 3T3 cells into early G1, and cellular compartmentalization of the phosphate donor. Proc. Natl Acad. Sci. USA 76, 3952–3956 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gressner, A. M. & Wool, I. G. The phosphorylation of liver ribosomal proteins in vivo. Evidence that only a single small subunit protein (S6) is phosphorylated. J. Biol. Chem. 249, 6917–6925 (1974).

    CAS  PubMed  Google Scholar 

  70. Kozma, S. C. Thomas G. p70s6k/p85s6k: mechanism of activation and role in mitogenesis. Cancer Biol. 5, 255–260 (1994).

    CAS  Google Scholar 

  71. Montagne, J. et al. Drosophila S6 kinase: a regulator of cell size. Science 285, 2126–2129 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Shima, H. et al. Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 17, 6649–6659 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kawasome, H. et al. Targeted disruption of p70(s6k) defines its role in protein synthesis and rapamycin sensitivity. Proc. Natl Acad. Sci. USA 95, 5033–5038 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stolovich, M. et al. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol. Cell. Biol. 22, 8101–8113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Naora, H., Takai, I., Adachi, M. & Naora, H. Altered cellular responses by varying expression of a ribosomal protein gene: sequential coordination of enhancement and suppression of ribosomal protein S3a gene expression induces apoptosis. J. Cell. Biol. 141, 741–753 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, J. et al. Implication of mammalian ribosomal protein S3 in the processing of DNA damage. J. Biol. Chem. 270, 13620–13629 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Boxer, L. M. & Dang, C. V. Translocations involving c-myc and c-myc function. Oncogene 20, 5595–5610 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Coller, H. A. et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl Acad. Sci. USA 97, 3260–3265 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Boon, K. et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 20, 1383–1393 (2001). SAGE analysis of MYCN target genes in human neuroblastoma cells reveals that most MYC target genes are involved in ribosome biogenesis and protein synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Menssen, A. & Hermeking, H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc. Natl Acad. Sci. USA 99, 6274–6279 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999). The direct overexpression of c-Myc during B-cell development results in increased cell growth that is independent of the cell cycle and correlates with an increase in total protein synthesis in the cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim, S., Li, Q., Dang, C. V. & Lee, L. A. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc. Natl Acad. Sci. USA 97, 11198–11202 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Iritani, B. M. Modulation of T-lymphocyte development, growth and cell size by the Myc antagonist and transcriptional repressor Mad1. EMBO J. 21, 4820–4830 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Piedra, M. E., Delgado, M. D., Ros, M. A. & Leon, J. c-Myc overexpression increases cell size and impairs cartilage differentiation during chick limb development. Cell Growth Differ. 13, 185–193 (2002).

    CAS  PubMed  Google Scholar 

  85. Schmidt, E. V. The role of c-myc in cellular growth control. Oncogene 18, 2988–2996 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Kozma, S. C. & Thomas, G. Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K. Bioessays 24, 65–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet. 19, 348–355 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Di Cristofano, A., De Acetis, M., Koff, A., Cordon-Cardo, C. & Pandolfi, P. P. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nature Genet. 27, 222–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Vogt, P. K. PI 3-kinase, mTOR, protein synthesis and cancer. Trends Mol. Med. 7, 482–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Backman, S., Stambolic, V. & Mak, T. PTEN function in mammalian cell size regulation. Curr. Opin. Neurobiol. 12, 516–522 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Myers, M. P. et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl Acad. Sci. USA. 95, 13513–13518 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brown, E. J. et al. Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377, 441–446 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Burnett, P. E., Barrow, R. K., Cohen, N. A., Snyder, S. H. & Sabatini, D. M. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl Acad. Sci. USA 95, 1432–1437 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Isotani, S. et al. Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase α in vitro. J. Biol. Chem. 274, 34493–34498 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Sabatini, D. M. Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Science 284, 1161–1164 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Neshat, M. S. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl Acad. Sci. USA 98, 10314–10319 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl Acad. Sci. USA 98, 10320–10325 (2001). References 97 and 98 report that Pten-deficient tumours show an increase in mTOR activation and an upregulation in p70S6k activity. These tumours can be effectively treated with the macrolide rapamycin, the cellular target of which is mTOR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gingras, A. C. et al. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 12, 502–513 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sekulic, A. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60, 3504–3513 (2000).

    CAS  PubMed  Google Scholar 

  101. Pullen, N. et al. Phosphorylation and activation of p70s6k by PDK1. Science 279, 707–710 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Aoki, M., Blazek, E. & Vogt, P. K. A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc. Natl Acad. Sci. USA 98, 136–141 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl Acad. Sci. USA 96, 1563–1568 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Suzuki, A. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol. 8, 1169–1178 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Gomez, M., Sampson, J. & Whittemore, V. The Tuberous Sclerosis Complex (Oxford Univ. Press, 1999).

    Google Scholar 

  106. Kwiatkowski, D. J. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 11, 525–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol. 4, 648–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Gao, X. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nature Cell Biol. 4, 699–704 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Tee, A. R. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc. Natl Acad. Sci. USA 99, 13571–13576 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Radimerski, T., Montagne, J., Hemmings-Mieszczak, M. & Thomas, G. Lethality of Drosophila lacking TSC tumor suppressor function rescued by reducing dS6K signaling. Genes Dev. 16, 2627–2632 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Goncharova, E. A. et al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J. Biol. Chem. 277, 30958–30967 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Jaeschke, A. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J. Cell Biol. 159, 217–224 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lazaris-Karatzas, A., Montine, K. S. & Sonenberg, N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345, 544–547 (1990). The first demonstration that a translation initiation factor shows oncogenic properties when constitutively overexpressed.

    Article  CAS  PubMed  Google Scholar 

  114. De Benedetti, A. & Harris, A. L. eIF4E expression in tumors: its possible role in progression of malignancies. Int. J. Biochem. Cell Biol. 31, 59–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Gingras, A. C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Ni, J., Tien, A. L. & Fournier, M. J. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89, 565–573 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Lafontaine, D. L., Bousquet-Antonelli, C., Henry, Y., Caizergues-Ferrer, M. & Tollervey, D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12, 527–537 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dokal, I. Dyskeratosis congenita in all its forms. Br. J. Haematol. 110, 768–779 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Giordano, E., Peluso, I., Senger, S. & Furia, M. minifly, a Drosophila gene required for ribosome biogenesis. J. Cell Biol. 144, 1123–1133 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zebarjadian, Y., King, T., Fournier, M. J., Clarke, L. & Carbon, J. Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Mol. Cell. Biol. 19, 7461–7472 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mitchell, J. R., Wood, E. & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Decatur, W. A. & Fournier, M. J. rRNA modifications and ribosome function. Trends Biochem. Sci. 27, 344–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Kullmann, M., Gopfert, U., Siewe, B. & Hengst, L. ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5'UTR. Genes Dev. 16, 3087–3099 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cornelis, S. et al. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol. Cell 5, 597–605 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Hoang, C. & Ferre-D'Amare, A. R. Cocrystal structure of a tRNA Psi55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell 107, 929–939 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Vagner, S., Galy, B. & Pyronnet, S. Irresistible IRES. Attracting the translation machinery to internal ribosome entry sites. EMBO Rep. 2, 893–898 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Da Costa, L., Willig, T. N., Fixler, J., Mohandas, N. & Tchernia, G. Diamond-Blackfan anemia. Curr. Opin. Pediatr. 13, 10–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Willis, A. E. Translational control of growth factor and proto-oncogene expression. Int. J. Biochem. Cell. Biol. 31, 73–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Spence, J. et al. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 102, 67–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Strezoska, Z., Pestov, D. G. & Lau, L. F. Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5.8S rRNA processing and 60S ribosome biogenesis. Mol. Cell. Biol. 20, 5516–5528 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pestov, D. G., Strezoska, Z. & Lau, L. F. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol. Cell. Biol. 21, 4246–4255 (2001). A defect in ribosome rRNA processing can directly affect cell-cycle progression through a p53-dependent process. This is a hallmark study proposing that a nucleolar stress affects cellular proliferation through crosstalk between the ribosome and the cell cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hidalgo, M. & Rowinsky, E. K. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19, 6680–6686 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Decatur, W. A. & Fournier, M. J. RNA-guided nucleotide modification of ribosomal and other RNAs. J. Biol. Chem. 278, 695–698 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nature Cell Biol. 4, 658–665 (2002). References 135 and 136 show that AKT phosphorylates TSC2 and thereby inhibits its function as negative regulator of p70S6k.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to M. Barna for input, discussion and critical reading of the review. We apologize to the many scientists whose work we did not cite due to space constraints. This work is supported by the National Cancer Institute, the Mouse Model of Human Cancer Consortium (MMHCC) and the Leukemia Lymphoma Society (LLS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Pandolfi.

Related links

Related links

DATABASES

CancerNet

leukaemia

small-cell lung carcinoma

LocusLink

CDK2

CDK4

cyclin D1

DKC1

EEF1A1

EEF2

EGF

MYC

NPM

nucleolin

p53

PDK1

PTEN

RB

TIF-IA

TIF-IB

TSC1

TSC2

OMIM

Diamond–Blackfan anaemia

dyskeratosis congenita

lymphangioleiomyomatosis

tuberous sclerosis

Glossary

NUCLEOLUS

The nucleolus is a suborganelle of the nucleus where rRNA is transcribed, processed and assembled into ribosomal subumits. Ribosomal proteins are added to rRNAs within the nucleolus.

CRYO-ELECTRON MICROSCOPY

A technique that is used to study the three-dimensional structures of biomolecules. A sample is rapidly frozen in liquid helium to preserve its structure and then examined in the frozen, hydrated state in a cryoelectron microscope.

RAPAMYCIN

Rapamycin is a macrolide with immunosuppressant properties and tumour-inhibitory effects. To exert its effect, rapamycin binds an immunophilin FK-506-binding protein 12, and this complex inhibits the cellular target of rapamycin, mTOR.

SERIAL ANALYSIS OF GENE EXPRESSION

(SAGE). A technique that is used to identify and quantitate genes that are differentially expressed between two different samples. Sage libraries are generated by adding a short nucleotide sequence tag (10 base pairs) to cDNAs from different RNA samples that are being analysed. The abundance of a given tag within the SAGE library corresponds to the expression level of the corresponding gene, which can easily be identified by sequencing directly from the transcript tag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruggero, D., Pandolfi, P. Does the ribosome translate cancer?. Nat Rev Cancer 3, 179–192 (2003). https://doi.org/10.1038/nrc1015

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1015

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing