Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Telomere dysfunction and the initiation of genome instability

Abstract

Tumour growth is an evolutionary process that is characterized by the selection of clonal populations of cells that acquire distinct genetic changes. Many cancer therapies aim to exploit the specific changes that occur in cancer cells, but understanding the underlying mechanisms of genomic instability that cause these mutations could lead to more effective therapies. If common mechanisms exist for initiating genomic instability in tumours, selection could explain the differences in specific gene mutations that accumulate in different tumour types. The cause of genomic instability in human tumours is unclear, although there is evidence to indicate that telomere dysfunction could make an important contribution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Telomere shortening in a simplified cancer-progression model.
Figure 2: Model for the mechanisms by which dysfunctional telomeres contribute to genomic instability.
Figure 3: Telomere fluorescence in situ hybridization in a tissue section of colonic mucosa.

Similar content being viewed by others

References

  1. Mitelman, F. (ed. Bertil Johansson, F. M.) Catalog of Chromosome Aberrations in Cancer (Wiley–Liss, New York, 1994).

    Google Scholar 

  2. Loeb, L. A., Springgate, C. F. & Battula, N. Errors in DNA replication as a basis of malignant changes. Cancer Res. 34, 2311–2321 (1974).

    CAS  PubMed  Google Scholar 

  3. Shih, I. M. et al. Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res. 61, 818–822 (2001).

    CAS  PubMed  Google Scholar 

  4. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Phear, G., Bhattacharyya, N. P. & Meuth, M. Loss of heterozygosity and base substitution at the APRT locus in mismatch-repair-proficient and-deficient colorectal carcinoma cell lines. Mol. Cell. Biol. 16, 6516–6523 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Da Costa L. T. & Lengauer, C. Exploring and exploiting instability. Cancer Biol. Ther. 1, 212–225 (2002).

    Article  Google Scholar 

  8. Maser, R. S. & DePinho, R. A. Connecting chromosomes, crisis, and cancer. Science 297, 565–569 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Muller, H. J. The remaking of chromosomes. Collecting Net. 13, 181–198 (1938).

    Google Scholar 

  10. McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Hemann, M. T., Strong, M. A., Hao, L. Y. & Greider, C. W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Hackett, J. A., Feldser, D. M. & Greider, C. W. Telomere dysfunction increases mutation rate and genomic instability. Cell 106, 275–286 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Gisselsson, D. et al. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc. Natl Acad. Sci. USA 98, 12683–12688 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lengauer, C. How do tumors make ends meet? Proc. Natl Acad. Sci. USA 98, 12331–12333 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Carson, M. & Hartwell, L. CDC 17: an essential gene that prevents telomere elongation in yeast. Cell 42, 249–257 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. Garvik, B., Carson, M. & Hartwell, L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15, 6128–6138 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O'Hagan, R. C. et al. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2, 149–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. McClintock, B. The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc. Natl Acad. Sci. USA 25, 405–416 (1939).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nowak, M. A. et al. The role of chromosomal instability in tumor initiation. Proc. Natl Acad. Sci. USA 99, 16226–16231 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomlinson, I. P., Novelli, M. R. & Bodmer, W. F. The mutation rate and cancer. Proc. Natl Acad. Sci. USA 93, 14800–14803 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Rudolph, K. L., Millard, M., Bosenberg, M. W. & DePinho, R. A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nature Genet. 28, 155–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Chang, S., Khoo, C. & DePinho, R. A. Modeling chromosomal instability and epithelial carcinogenesis in the telomerase-deficient mouse. Semin. Cancer Biol. 11, 227–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. de Lange, T. et al. Structure and variability of human chromosome ends. Mol. Cell. Biol. 10, 518–527 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Lange, T. in Telomeres (eds. Blackburn, E. H. & Greider, C. W.) 265–293 (Cold Spring Harbor Laboratory Press, New York, 1995).

    Google Scholar 

  31. Meeker, A. K. et al. Telomere length assessment in human archival tissues: combined telomere fluorescence in situ hybridization and immunostaining. Am. J. Pathol. 160, 1259–1268 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Heek, N. T. et al. Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am. J. Pathol. 161, 1541–1547 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meeker, A. K. et al. Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res. 62, 6405–6409 (2002).

    CAS  PubMed  Google Scholar 

  34. Ekbom, A., Helmick, C., Zack, M. & Adami, H. O. Ulcerative colitis and colorectal cancer. A population-based study. N. Engl. J. Med. 323, 1228–1233 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Kinouchi, Y. et al. Telomere shortening in the colonic mucosa of patients with ulcerative colitis. J. Gastroenterol. 33, 343–348 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Kitada, T., Seki, S., Kawakita, N., Kuroki, T. & Monna, T. Telomere shortening in chronic liver diseases. Biochem. Biophys. Res. Commun. 211, 33–39 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. O'Sullivan, J. N. et al. Chromosomal instability in ulcerative colitis is related to telomere shortening. Nature Genet. 32, 280–284 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Engelhardt, M., Drullinsky, P., Guillem, J. & Moore, M. A. Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. Clin. Cancer Res. 3, 1931–1941 (1997).

    CAS  PubMed  Google Scholar 

  39. Campisi, J. Replicative senescence: an old lives' tale? Cell 84, 497–500 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Greider, C. W. Cellular responses to telomere shortening: cellular senescence as a tumor suppressor mechanism. Harvey Lect. 96, 33–50 (2000).

    PubMed  Google Scholar 

  41. Hayflick, L. & Moorhead, P. S. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  PubMed  Google Scholar 

  42. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sherwood, S. W., Rush, D., Ellsworth, J. L. & Schimke, R. T. Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. Proc. Natl Acad. Sci. USA 85, 9086–9090 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Benn, P. A. Specific chromosome aberrations in senescent fibroblast cell lines derived from human embryos. Am. J. Hum. Genet. 28, 465–473 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell Biol. 9, M57–M60 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Hackett, J. A. & Greider, C. W. Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene 21, 619–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Shay, J. W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Chadeneau, C., Hay, K., Hirte, H. W., Gallinger, S. & Bacchetti, S. Telomerase activity associated with acquisition of malignancy in human colorectal cancer. Cancer Res. 55, 2533–2536 (1995).

    CAS  PubMed  Google Scholar 

  50. Tang, R., Cheng, A. J., Wang, J. Y. & Wang, T. C. Close correlation between telomerase expression and adenomatous polyp progression in multistep colorectal carcinogenesis. Cancer Res. 58, 4052–4054 (1998).

    CAS  PubMed  Google Scholar 

  51. Bryan, T. M., Englezou, A., Dunham, M. A. & Reddel, R. R. Telomere length dynamics in telomerase-positive immortal human cell populations. Exp. Cell Res. 239, 370–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Myung, K., Chen, C. & Kolodner, R. D. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411, 1073–1076 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Maringele, L. & Lydall, D. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev. 16, 1919–1933 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Greider lab for reading the manuscript and A. I. Meeker for providing the image in figure 3. This work is supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol W. Greider.

Related links

Related links

DATABASES

Cancer.gov

colorectal cancer

osteosarcomas

pancreatic cancer

prostate cancer

LocusLink

Apc

APC

BUB1

BUBR1

mTR

OMIM

ataxia telangiectasia

Bloom's syndrome

dyskeratosis congenita

Werner's syndrome

FURTHER INFORMATION

Carol Greider's lab

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldser, D., Hackett, J. & Greider, C. Telomere dysfunction and the initiation of genome instability. Nat Rev Cancer 3, 623–627 (2003). https://doi.org/10.1038/nrc1142

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing