Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic predisposition to colorectal cancer

Key Points

  • Cancer is a genetic disease. Most cancer-causing mutations are somatic, occurring in the affected tissue during the course of carcinogenesis; however, most cancers also have a hereditary component that is caused by predisposing mutations that affect the germline, are heritable and contribute to the initiation of carcinogenesis.

  • Colorectal cancer is probably the type of cancer for which the most is known about the genes affected by cancer-causing mutations, their normal functions and their carcinogenic effects when mutated.

  • High-penetrance mutations confer predisposition to colorectal cancer mainly in Lynch syndrome (which involves mutations in mismatch-repair genes) and in familial adenomatous polyposis (which involves mutations in the APC tumour suppressor). Together, these conditions account for 5% or less of all cases of colorectal cancer.

  • Determining carriership for the mutations that underlie these conditions is important in the management and prevention of cancer in these patients and their families.

  • Low-penetrance mutations account for a high proportion of all the attributable risk of colorectal cancer, in both familial and sporadic cases. These mutations are more difficult to identify, but — mainly due to the implementation of association studies — are increasingly being detected and characterized.

  • The identification of both high- and low-penetrance mutations contributes significantly to our understanding of the molecular genetic processes occurring in cancer. This understanding facilitates the development of therapeutic drugs and preventive strategies.

  • Gene–gene and gene–environment interactions have a significant influence on susceptibility to colorectal cancer. Our current understanding of these interactions is limited, and concerted research efforts in this area will be important for a full understanding of predisposition to this cancer.

Abstract

High-penetrance mutations in several genes have been identified that contribute to hereditary colorectal cancer. The role of these mutations in cancer pathogenesis is well understood and their detection is successfully used in clinical diagnosis. In stark contrast, our understanding of the influence of low-penetrance mutations that account for most of the remaining familial cases of colorectal cancer, as well as an unknown proportion of sporadic cases, is far less advanced. Extensive ongoing research into low-penetrance, multifactorial predisposition to colorectal cancer is now beginning to bear fruit, with important implications for understanding disease aetiology and developing new diagnostic, preventive and therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A global view of the genetic contribution to colorectal cancer.
Figure 2: Distribution of mismatch-repair mutations in Lynch syndrome.

Similar content being viewed by others

References

  1. Potter, J. D. Colorectal cancer: molecules and populations. J. Natl Cancer Inst. 91, 916–932 (1999). A comprehensive review of the molecular population-genetics aspects of colorectal cancer.

    Article  CAS  PubMed  Google Scholar 

  2. Mayer, R. J. Harrison's Principles of Internal Medicine 15th Edition (eds Braunwals, E. et al.) 581–588 (McGraw-Hill, New York, 2001).

    Google Scholar 

  3. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990). A comprehensive early review of the molecular basis of colorectal cancer.

    Article  CAS  PubMed  Google Scholar 

  4. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Salovaara, R. et al. Population-based molecular detection of hereditary nonpolyposis colorectal cancer. J. Clin. Oncol. 18, 2193–2200 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Olsson, L. & Lindblom, A. Family history of colorectal cancer in a Swedish county. Familial Cancer 2, 87–93 (2003).

    Article  PubMed  Google Scholar 

  7. St. John, D. J. B. et al. Cancer risk in relatives of patients with common colorectal cancer. Ann. Int. Med. 118, 785–790 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Johns, L. E. & Houlston, R. S. A systematic review and meta-analysis of familial colorectal cancer risk. Am. J. Gastroenterol. 96, 2992–3003 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Goss, K. H., Trzepacz, C., Tuohy, T. M. F. & Groden, J. Attenuated APC alleles produce functional protein from internal translation initiation. Proc. Natl Acad. Sci. 99, 8161–8166 (2002). The explanation of the paradox that truncating mutations in the most proximal part of the APC gene cause a milder 'attenuated' form of familial adenomatous polyposis.

    Article  Google Scholar 

  10. Yan, H. et al. Small changes in expression affect predisposition to tumorigenesis. Nature Genet. 30, 25–26 (2002). First evidence that allele-specific reduction in APC expression is heritable and causes predisposition to familial adenomatous polyposis.

    Article  CAS  PubMed  Google Scholar 

  11. Lynch, H. T., Guirgis, H. A., Lynch, P. M., Lynch, J. F. & Harris, R. E. Familial cancer syndromes: a survey. Cancer (Suppl) 39, 1867–1881 (1977).

    Article  CAS  Google Scholar 

  12. Lynch, H. T. & Krush, A. J. Cancer family 'G' revisited: 1895–1970. Cancer 27, 1505–1511 (1971). An early reminder from Henry Lynch that predisposition to non-polyposis colorectal and other cancers can be inherited as a dominant trait.

    Article  CAS  PubMed  Google Scholar 

  13. Umar, A., Risinger, J. I., Hawk, E. T. & Barrett, J. C. Testing guidelines for hereditary non-polyposis colorectal cancer. Nature Rev. Cancer 4, 153–158 (2004).

    Article  CAS  Google Scholar 

  14. Lynch, H. T. & de la Chapelle, A. Genomic medicine: hereditary colon cancer. N. Engl. J. Med. 348, 919–932 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Aaltonen, L. A. et al. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N. Engl. J. Med. 338, 1481–1487 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Cunningham, J. M. et al. The frequency of hereditary defective mismatch repair in a prospective series of unselected colorectal carcinomas. Am. J. Hum. Genet. 69, 780–790 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Percesepe, A. et al. Molecular screening for hereditary nonpolyposis colorectal cancer: a prospective, population-based study. J. Clin. Oncol. 19, 3944–3950 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Samowitz, W. S. et al. The colon cancer burden of genetically defined hereditary nonpolyposis colon cancer. Gastroenterology 121, 830–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Ravnik-Glavac, M., Potocnik, U. & Glavac, D. Incidence of germline hMLH1 and hMSH2 mutations (HNPCC patients) among newly diagnosed colorectal cancers in a Slovenian population. J. Med. Genet. 37, 533–536 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227–1236 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Hemminki, A. et al. Loss of the wild type MLH1 gene is a feature of hereditary nonpolyposis colorectal cancer. Nature Genet. 8, 405–410 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, B. et al. hMSH2 mutations in hereditary non–polyposis colorectal cancer kindreds. Cancer Res. 54, 4590–4594 (1994).

    CAS  PubMed  Google Scholar 

  23. Liu, B. et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nature Genet. 9, 48–55 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Kane, M. F. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 57, 808–811 (1997).

    CAS  PubMed  Google Scholar 

  25. Aaltonen, L. A. et al. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816 (1993). The first demonstration that microsatellite instability is a hallmark of Lynch syndrome.

    Article  CAS  PubMed  Google Scholar 

  26. Aaltonen, L. A. et al. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 54, 1645–1648 (1994).

    CAS  PubMed  Google Scholar 

  27. Boland, C. R. et al. A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58, 5248–5257 (1998).

    CAS  PubMed  Google Scholar 

  28. Konishi, M. et al. Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology 111, 307–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Markowitz, S. et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Peltomäki, P. & Vasen, H. F. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 113, 1146–1158 (1997). An early, comprehensive summary of the mutational spectrum in Lynch syndrome.

    Article  PubMed  Google Scholar 

  31. Renkonen, E. et al. Altered expression of MLH1, MSH2, and MSH6 in predisposition to hereditary nonpolyposis colorectal cancer. J. Clin. Oncol. 21, 3629–3637 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Miyaki, M. et al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nature Genet. 17, 271–272 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Nicolaides, N. C. et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371, 75–80 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Nicolaides, N. C. et al. Genomic organization of the human PMS2 gene family. Genomics 30, 195–206 (1995)

    Article  CAS  PubMed  Google Scholar 

  35. Nicolaides, N. C., Littman, S., Modrich, P., Kinzler, K. W. & Vogelstein, B. A naturally occurring hPMS2 mutation can confer a dominant negative phenotype. Mol. Cell. Biol. 18, 1635–1641 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakagawa, H. et al. Mismatch repair gene PMS2: disease-causing germline mutations are frequent in patients whose tumors stain negative for PMS2 protein but paralogous genes obscure mutation detection and interpretation. Cancer Res. 64, 4721–4727 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. De Vos, M. et al. Novel PMS2 pseudogenes can conceal recessive mutations causing a distinctive childhood cancer syndrome. Am. J. Hum. Genet. 74, 954–964 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, Y. et al. A role for MLH3 in hereditary nonpolyposis colorectal cancer. Nature Genet. 29, 137–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Lammi, L. et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am. J. Hum. Genet. 74, 1043–1050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu, S. -L. et al. HNPCC associated with germline mutation in the TGF-β type II receptor gene. Nature Genet. 19, 17–18 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. da Costa, L. T. et al. Polymerase δ variants in RER colorectal tumours. Nature Genet. 9, 10–11 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Froggatt, N. J. et al. A common MSH2 mutation in English and North American HNPCC families: origin, phenotypic expression, and sex specific differences in colorectal cancer. J. Med. Genet. 36, 97–102 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Desai, D. C. et al. Recurrent germline mutation in MSH2 arises frequently de novo. J. Med. Genet. 37, 646–652 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chan, T. L. et al. A novel germline 1.8-kb deletion of hMLH1 mimicking alternative splicing: a founder mutation in the Chinese population. Oncogene 20, 2976–2981 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Jaeger, A. C. et al. Reduced frequency of extracolonic cancers in hereditary nonpolylposis colorectal cancer families with monoallelic hMLH1 expression. Am. J. Hum. Genet. 61, 129–138 (1997).

    Article  Google Scholar 

  46. Stella, A. et al. A nonsense mutation in MLH1 causes exon skipping in three unrelated HNPCC families. Cancer Res. 61, 7020–7024 (2001).

    CAS  PubMed  Google Scholar 

  47. Caluseriu, O. et al. A founder MLH1 mutation in families from the districts of Modena and Reggio-Emilia in northern Italy with hereditary non-polyposis colorectal cancer associated with protein elongation and instability. J. Med. Genet. 41, e34 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chan, T. L. et al. MSH2 c. 1452-1455delAATG is a founder mutation and an important cause of hereditary nonpolyposis colorectal cancer in the southern Chinese populations. Am. J. Hum. Genet. 74, 1035–1042 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hemminki, A. et al. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 39, 184–187 (1998).

    Article  CAS  Google Scholar 

  50. Lim, W. et al. Further observations of LKB1/STK11 status and cancer risk in Peutz–Jeghers syndrome. Br. J. Cancer 89, 308–313 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Howe, J. R. et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280, 1086–1088 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Howe, J. R. et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nature Genet. 28, 184–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Houlston, R. et al. Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases. Hum. Mol. Genet. 7, 1907–1912 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Sayed, M. G. et al. Germline SMAD4 or BMPR1A mutations and phenotype of juvenile polyposis. Ann. Surg. Oncol. 9, 901–906 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Al-Tassan, N. et al. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nature Genet. 30, 227–232 (2002). The first demonstration of a gene that causes a high level of predisposition to colorectal cancer when both alleles are mutated, and therefore shows typical recessive inheritance.

    Article  CAS  PubMed  Google Scholar 

  56. Jones, S. et al. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C→T:A mutations. Hum. Mol. Genet. 11, 2961–2967 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Sieber, O. M. et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N. Engl. J. Med. 348, 791–799 (2003).

    Article  PubMed  Google Scholar 

  58. Gismondi, V. et al. Prevalence of the Y165C, G382D and 1395delGGA germline mutations of the MYH gene in Italian patients with adenomatous polyposis coli and colorectal adenomas. Int. J. Cancer 109, 680 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Enholm, S. et al. Proportion and phenotype of MYH-associated colorectal neoplasia in a population-based series of Finnish colorectal cancer patients. Am. J. Pathol. 163, 827–832 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fleischmann, C. et al. Comprehensive analysis of the contribution of germline MYH variation to early-onset colorectal cancer. Int. J. Cancer 109, 554–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Wiesner, G. L. et al. A subset of familial colorectal neoplasia kindreds linked to chromosome 9q22. 2-31. 2. Proc. Natl Acad. Sci. USA 100, 12961–12965 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tomlinson, I. et al. Inherited susceptibility to colorectal adenomas and carcinomas: evidence for a new predisposition gene on 15q14-q22. Gastroenterology 116, 789–795 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Jaeger, A. C. et al. An ancestral Ashkenazi haplotype at the HPS/CRAC1 locus on 15q13-q14 is associated with hereditary mixed polyposis syndrome. Am. J. Hum. Genet. 72, 1261–1267 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park, W. S. et al. A distinct tumor suppressor gene locus on chromosome 15q21. 1 in sporadic form of colorectal cancer. Cancer Res. 60, 70–73 (2000).

    CAS  PubMed  Google Scholar 

  65. Laiho, P. et al. Genome-wide allelotyping of 104 Finnish colorectal cancers reveals an excel of allelic imbalance in chromosome 10q in familial cases. Oncogene 22, 2206–2214 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Gustafson, C. E. et al. Functional evidence for a colorectal cancer tumor suppressor gene at chromosome 8p22-23 by monochromosome transfer. Cancer Res. 56, 5238–5245 (1996).

    CAS  PubMed  Google Scholar 

  67. Laken, S. J. et al. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nature Genet. 17, 79–83 (1997). The first convincing description of a common low-penetrance allele predisposing to colorectal cancer.

    Article  CAS  PubMed  Google Scholar 

  68. Rozen, P. et al. Prevalence of the I1307K APC gene variant in Israeli Jews of differing ethnic origin and risk for colorectal cancer. Gastroenterology 116, 54–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Woodage, T. et al. The APC I1307K allele and cancer risk in a community-based study of Ashkenazi Jews. Nature Genet. 20, 62–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Gryfe, R., DiNicola, N., Gallinger, S. & Redston, M. Somatic instability of the APC I1307K allele in colorectal neoplasia. Cancer Res. 58, 4040 –4043 (1998).

    CAS  PubMed  Google Scholar 

  71. Drucker, L. et al. Adenomatous polyposis coli I1307K mutation in Jewish patients with different ethnicity. Cancer 88, 755–760 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Zauber, N. P., Sabbath-Solitare, M., Marotta, S. P. & Bishop, D. T. The characterization of somatic APC mutations in colonic adenomas and carcinomas in Ashkenazi Jews with the APC I1307K variant using linkage disequilibrium. J. Pathol. 199, 146–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Strul, H. et al. The I1307K adenomatous polyposis coli gene variant does not contribute in the assessment of the risk for colorectal cancer in Ashkenazi Jews. Cancer Epidemiol. Biomarkers Prev. 12, 1012–1015 (2003).

    CAS  PubMed  Google Scholar 

  74. Sieber, O., Lipton, L., Heinimann, K. & Tomlinson, I. Colorectal tumorigenesis in carriers of the APC I1307K variant: lone gunman or conspiracy? J. Pathol. 199, 137–139 (2003)

    Article  CAS  PubMed  Google Scholar 

  75. Prior, T. W. et al. I1307K polymorphism of the APC gene in colorectal cancer. Gastroenterology 116, 58–63 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Patael, Y. et al. Common origin of the I1307K APC polymorphism in Ashkenazi and non-Ashkenazi Jews. Eur. J. Hum. Genet. 7, 555–559 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Shtoyerman-Chen, R. et al. The I1307K APC polymorphism: prevalence in Non-Ashkenazi Jews and evidence for a founder effect. Genet. Testing 5, 141–146 (2001).

    Article  CAS  Google Scholar 

  78. Niell, B. L., Long, J. C., Rennert, G. & Gruber, S. B. Genetic anthropology of the colorectal cancer-susceptibility allele APC I1307K: evidence of genetic drift within the Ashkenazim. Am. J. Hum. Genet. 73, 1250–1260 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rozen, P. et al. Clinical and screening implications of the I1307K adenomatous polyposis coli gene variant in Israeli Ashkenazi Jews with familial colorectal neoplasia. Evidence for a founder effect. Cancer 94, 2561–2568 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Benichou, J. A review of adjusted estimators of attributable risk. Stat. Methods Med. Res. 10, 195–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Kaklamani, V. G. et al. TGFBR1*6A and cancer risk: a meta-analysis of seven case-control studies. J. Clin. Oncol. 21, 3236–3243 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Pasche, B. et al. TBFBR1*6A and cancer: a meta-analysis of 12 case-control studies. J. Clin. Oncol. 22, 756–758 (2004).

    Article  PubMed  Google Scholar 

  83. Stefanovska, A. -M. et al. TβR-I(6A) Polymorphism is not a tumor susceptibility allele in Macedonian colorectal cancer patients. Cancer Res. 61, 8351–8352 (2001).

    CAS  PubMed  Google Scholar 

  84. Chen, T. et al. Structural alterations of transforming growth factor-β receptor genes in human cervical carcinoma. Int. J. Cancer 82, 43–51 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Pasche, B. et al. TβR-I(6A) is a candidate tumor susceptibility allele. Cancer Res. 59, 5678–5682 (1999).

    CAS  PubMed  Google Scholar 

  86. Lipkin, S. M. et al. The MLH1 D132H variant is associated with susceptibility to sporadic colorectal cancer. Nature Genet. 36, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Houlston, R. S. & Tomlinson, I. P. M. Polymorphisms and colorectal tumor risk. Gastroenterology 121, 282–301 (2001). An extensive critical review of published papers on polymorphisms thought to affect colorectal cancer risk.

    Article  CAS  PubMed  Google Scholar 

  88. Peltomäki, P., Gao, X. & Mecklin, J. P. Genotype and phenotype in hereditary nonpolyposis colon cancer: a study of families with different vs. shared predisposing mutations. Fam. Cancer. 1, 9–15 (2001).

    Article  PubMed  Google Scholar 

  89. Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  90. Dietrich, W. et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75, 631–639 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Cormier, R. T. et al. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nature Genet. 17, 88–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Nadeau, J. H. Modifier genes in mice and humans. Nature Rev. Genet. 2, 165–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Nimmrich, I. et al. Loss of the PLA2G2A gene in a sporadic colorectal tumor of a patient with a PLA2G2A germline mutation and absence of PLA2G2A germline alterations in patients with FAP. Hum. Genet. 100, 345–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Terry, P. et al. Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J. Natl Cancer Inst. 93, 525–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Risch, N. A note on multiple testing procedures in linkage analysis. Am. J. Hum. Genet. 48, 1058–1064 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nature Genet. Suppl. 33, 228–237 (2003).

    Article  CAS  Google Scholar 

  97. Risch, N. The genetic epidemiology of cancer: interpreting family and twin studies and their implications for molecular genetic approaches. Cancer Epidemiol. Biomarkers Prev. 10, 733–741 (2001). An insightful interpretation and evaluation of studies into the heritability of cancer.

    CAS  PubMed  Google Scholar 

  98. Goldgar, D. E., Easton, D. F., Cannon-Albright, L. A. & Skolnick, M. H. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J. Natl Cancer Inst. 21, 1600–1608 (1994).

    Article  Google Scholar 

  99. Dong, C. & Hemminki, K. Modification of cancer risks in offspring by sibling and parental cancers from 2,122,616 nuclear families. Int. J. Cancer 92, 144–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer. New Engl. J. Med. 343, 78–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Nysträm-Lahti, M. et al. Founding mutations and Alu-mediated recombination in hereditary colon cancer. Nature Med. 1, 1203–1206 (1995). The first demonstration of widespread founder mutations in Lynch syndrome.

    Article  Google Scholar 

  102. Moisio, A. -L., Sistonen, P., Weissenbach, J., de la Chapelle, A. & Peltomäki, P. Age and origin of two common MLH1 mutations predisposing to hereditary colon cancer. Am. J. Hum. Genet. 59, 1243–1251 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hutter, P. et al. Complex genetic predisposition to cancer in an extended HNPCC family with an ancestral hMLH1 mutation. J. Med. Genet. 33, 636–640 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Froggatt, N. J. et al. Genetic linkage analysis in hereditary nonpolyposis colon cancer syndrome. J. Med. Genet. 32, 352–357 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Green, J. et al. Impact of gender and parent of origin on the phenotypic expression of hereditary nonpolyposis colorectal cancer in a large Newfoundland kindred with a common MSH2 mutation. Dis. Colon Rect. 45, 1223–1232 (2002).

    Article  Google Scholar 

  106. Foulkes, W. D. et al. The founder mutation MSH2*1906G→C is an important cause of hereditary non-polyposis colorectal cancer in the Ashkenazi Jewish population. Am. J. Hum. Genet. 71, 1395–1412 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wagner, A. et al. Molecular analysis of hereditary nonpolyposis colorectal cancer in the United States: high mutation detection rate among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene. Am. J. Hum. Genet. 72, 1088–1100 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nakagawa, H., Hampel, H. & de la Chapelle, A. Identification and characterization of genomic rearrangements of MSH2 and MLH1 in Lynch syndrome (HNPCC) by novel techniques. Hum. Mut. 22, 258 (2003).

    Article  PubMed  Google Scholar 

  109. Lynch, H. T. et al. A founder mutation of the MSH2 gene and hereditary nonpolyposis colorectal cancer in the United States. JAMA 291, 718–724 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Gruber, S. B. et al. BLM heterozygosity and the risk of colorectal cancer. Science 297, 2013 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Shaheen, N. J. et al. Association between hemochromatosis (HFE) gene mutation carrier status and the risk of colon cancer. J. Natl. Cancer Inst. 95, 154–159 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Porter, T. R. et al. Contribution of cyclin d1 (CCND1) and E-cadherin (CDH1) polymorphisms to familial and sporadic colorectal cancer. Oncogene 21, 1928–1933 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Cleary, S. P. et al. Heterozygosity for the BLMASH mutation and cancer risk. Cancer Res. 63, 1769–1771 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank R. Davuluri, C. Eng, J. Green, J. Groden, P. Peltomäki and B. Vogelstein for advice. The author's work is funded by grants from the United States National Institutes of Health and from the State of Ohio Biomedical Research and Technology Transfer Commission. The content reflects the views of the Grantee and does not necessarily reflect the views of the State of Ohio Biomedical Research and Technology Transfer Commission.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

colorectal cancer

kidney cancer

lung cancer

ovarian cancer

prostate cancer

Entrez Gene

APC

AXIN2

BMPR1A

MLH1

MSH2

MSH6

PMS2

MLH3

Pla2g2a

POLD

LKB1

SMAD4

TGFβ

TGFβR1

TGFβR2

TP53

OMIM

Bannayan–Ruvalcaba–Riley syndrome

Cowden disease

juvenile polyposis

Peutz–Jeghers syndrome

FURTHER INFORMATION

Human Genetic Disease Database

Institut Curie p53 web site

International Collaborative Group on Heriditary Non-Polyposis Colorectal Cancer mutation database

The APC database

Glossary

DUKE'S STAGE A

At this stage, cancer has spread beyond the innermost lining of the colon to the second and third cell layers and involves the inside wall of the colon. The cancer has not spread to the outer wall of the colon or outside the colon.

DUKE'S STAGE D

At this stage, cancer has spread outside the colon to other parts of the body, such as the liver or the lungs. The tumour can be any size and might or might not include affected lymph nodes.

PROBAND

The family member who was initially ascertained (that is, who came to the attention of the researcher) in a study of familial aggregation of cancer (or other disease).

PENETRANCE

The frequency with which individuals who carry a given mutation show the phenotype associated with that mutation. If the penetrance of a disease allele is 100%, then all individuals carrying that allele will express the associated phenotype.

HAMARTOMA

A benign overgrowth of tissue that is composed of cells that are normally present at that site. In the gastrointestinal tract, hamartomas typically have a marked expansion of the muscular and fibrous tissue layer.

MODIFIER GENE

A gene that alters the phenotype of another gene, or that of a mutation in another gene.

HYPOMORPHIC MUTATION

A mutation that does not completely inactivate the product of a gene.

MISMATCH REPAIR

DNA repair in response to incorrect pairing of bases.

CpG ISLANDS

Regions of DNA with a high density of cytosine– phosphoguanine nucleotides, which are usually located in the promoter region or the first exons of a gene. CpG islands are involved in the regulation of transcription, because their methylation can lead to permanent silencing of the associated gene.

MUTATOR PHENOTYPE

Genetic or epigenetic abnormality that leads to an increased rate of mutation. Often caused by defects in the DNA mismatch-repair pathway.

MICROSATELLITE INSTABILITY

Characterized by expansion or contraction of short repeated DNA sequences (that is, microsatellite repeats) caused by insertion or deletion of repeated units. This instability, also known as a 'mutator phenotype' or 'replication error', indicates probable defects in mismatch-repair genes.

EXPRESSIVITY

The type of involvement or extent to which a particular organ or structure is affected by a specific genotype.

HAPLOTYPE

An experimentally determined profile of genetic markers that are present on a single chromosome of any given individual.

ASHKENAZI JEWS

A Jewish population originating from eastern or central Europe. Because of isolation from other communities until the past few generations, this population has a less diverse gene pool than most other groups and represents a typical founder population.

HAPLOINSUFFICIENCY

A situation in which a loss-of-function phenotype is produced by mutation of one allele of a gene in a diploid cell, even though the other allele is wild-type.

COMPOUND HETEROZYGOUS

Carrying two different mutations in each allele of a gene.

CONCORDANT TWINS

A pair of twins in which the same trait is observed in each twin.

DISCORDANT TWINS

A pair of twins in which the same trait is not observed in each twin.

RELATIVE RISK

Indicates how much greater or smaller the lifetime risk of disease is in a carrier of the allele than in a non-carrier. A typical value is a twofold greater risk.

ATTRIBUTABLE RISK

The proportion of all cases of a disease in population that is caused by a specific allele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Chapelle, A. Genetic predisposition to colorectal cancer. Nat Rev Cancer 4, 769–780 (2004). https://doi.org/10.1038/nrc1453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1453

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing