Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia

Key Points

  • Chronic myelogenous leukaemia (CML) results from the neoplastic transformation of a haematopoietic stem cell. Clinical and laboratory studies indicate that the fusion protein BCR–ABL is essential for initiation, maintenance and progression of CML, yet the transformation of CML from chronic phase to blast phase requires additional genetic and/or epigenetic abnormalities.

  • Imatinib — an inhibitor of the tyrosine-kinase activity of BCR–ABL — has been successfully used to treat patients with chronic-phase CML, but residual disease persists and drug resistance emerges. It is therefore important to identify other factors involved in the pathogenesis of CML, to design alternative treatment strategies.

  • Transgenic expression of BCR–ABL in mice leads to a myeloproliferative disorder that resembles the chronic phase of CML in patients. The ABL tyrosine-kinase activity is necessary but not sufficient to induce CML-like disease in mice. So, additional activities of BCR–ABL, beyond its kinase activity, are important for leukaemogenesis.

  • BCR–ABL also interacts with oncogenic transcription factors to induce a form of acute myelogenous leukaemia that resembles the blast phase of CML, indicating that disease progression involves cooperation between BCR–ABL and mutations that disrupt haematopoietic gene transcription.

  • CML progenitor cells seem to be refractory to imatinib therapy, indicating that the biology of haematopoietic stem/progenitor cells and tumour microenvironment are likely to contribute to the disease development and maintenance.

Abstract

Imatinib, a potent inhibitor of the oncogenic tyrosine kinase BCR–ABL, has shown remarkable clinical activity in patients with chronic myelogenous leukaemia (CML). However, this drug does not completely eradicate BCR–ABL-expressing cells from the body, and resistance to imatinib emerges. Although BCR–ABL remains an attractive therapeutic target, it is important to identify other components involved in CML pathogenesis to overcome this resistance. What have clinical trials of imatinib and studies using mouse models for BCR–ABL leukaemogenesis taught us about the functions of BCR–ABL beyond its kinase activity, and how these functions contribute to CML pathogenesis?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The development of chronic myelogenous leukaemia.
Figure 2: The ABL and BCR proteins.
Figure 3: Leukaemogenic signalling of BCR–ABL.

Similar content being viewed by others

References

  1. Kurzrock, R., Gutterman, J. & Talpaz, M. The molecular genetics of Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 319, 990–998 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Goldman, J. M. & Druker, B. J. Chronic myeloid leukemia: current treatment options. Blood 98, 2039–2042 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Deininger, M., Buchdunger, E. & Druker, B. J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 23 Dec 2004 (10.1182/blood-2004-08-3097).

  4. Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nature Med. 2, 561–566 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Deininger, M. W., Goldman, J. M., Lydon, N. & Melo, J. V. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR–ABL-positive cells. Blood 90, 3691–3698 (1997).

    CAS  PubMed  Google Scholar 

  6. Deininger, M. W. et al. BCR–ABL tyrosine kinase activity regulates the expression of multiple genes implicated in the pathogenesis of chronic myeloid leukemia. Cancer Res. 60, 2049–2055 (2000).

    CAS  PubMed  Google Scholar 

  7. le Coutre, P. et al. In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J. Natl Cancer Inst. 91, 163–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Druker, B. J., O'Brien, S. G., Cortes, J. & Radich, J. Chronic myelogenous leukemia. Hematology (Am. Soc. Hematol. Educ. Program) 111–135 (2002).

  9. Stentoft, J. et al. Kinetics of BCR–ABL fusion transcript levels in chronic myeloid leukemia patients treated with STI571 measured by quantitative real-time polymerase chain reaction. Eur. J. Haematol. 67, 302–308 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Bhatia, R. et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101, 4701–4707 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Lowenberg, B. Minimal residual disease in chronic myeloid leukemia. N. Engl. J. Med. 349, 1399–1401 (2003).

    Article  PubMed  Google Scholar 

  12. Gorre, M. E. & Sawyers, C. L. Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Curr. Opin. Hematol. 9, 303–307 (2002). A comprehensive review on the molecular mechanisms of imatinib resistance in CML.

    Article  PubMed  Google Scholar 

  13. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCRABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Weisberg, E. & Griffin, J. D. Resistance to imatinib (Glivec): update on clinical mechanisms. Drug Resist. Updat. 6, 231–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Woodring, P. J., Hunter, T. & Wang, J. Y. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J. Cell Sci. 116, 2613–2626 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Hernandez, S. E., Krishnaswami, M., Miller, A. L. & Koleske, A. J. How do Abl family kinases regulate cell shape and movement? Trends Cell Biol. 14, 36–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Schwartzberg, P. L. et al. Mice homozygous for the ablm1 mutation show poor viaility and depletion of selected B and T cell populations. Cell 65, 1165–1175 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Tybulewicz, V. L. J., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Koleske, A. J. et al. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 21, 1259–1272 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Voncken, J. W. et al. Increased neutrophil respiratory burst in bcr-null mutants. Cell 80, 719–728 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Ren, R. The molecular mechanism of chronic myelogenous leukemia and its therapeutic implications: studies in a murine model. Oncogene 21, 8629–8642 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Ramaraj, P. et al. Effect of mutational inactivation of tyrosine kinase activity on BCR/ABL-induced abnormalities in cell growth and adhesion in human hematopoietic progenitors. Cancer Res. 64, 5322–5331 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, R. C., Jiang, Y. & Verfaillie, C. M. A model of human p210(bcr/ABL)-mediated chronic myelogenous leukemia by transduction of primary normal human CD34+ cells with a BCR/ABL-containing retroviral vector. Blood 97, 2406–2412 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Daley, G. Q., Van Etten, R. A. & Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247, 824–830 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Kelliher, M. A., McLaughlin, J., Witte, O. N. & Rosenberg, N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc. Natl Acad. Sci. USA 87, 6649–6653 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Elefanty, A. G., Hariharan, I. K. & Cory, S. bcr–abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J. 9, 1069–1078 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hawley, R. G. High-titer retroviral vectors for efficient transduction of functional genes into murine hematopoietic stem cells. Ann. NY Acad. Sci. 716, 327–330 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Cherry, S. R., Biniszkiewicz, D., van Parijs, L., Baltimore, D. & Jaenisch, R. Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol. Cell. Biol. 20, 7419–7426 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, X. & Ren, R. Bcr–Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 92, 3829–3840 (1998).

    CAS  PubMed  Google Scholar 

  30. Pear, W. S. et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92, 3780–3792 (1998).

    CAS  PubMed  Google Scholar 

  31. Li, S., Ilaria, R. L., Million, R. P., Daley, G. Q. & Van Etten, R. A. The p190, p210, and p230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J. Exp. Med. 189, 1399–1412 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heisterkamp, N., Jenster, G., Kioussis, D., Pattengale, P. K. & Groffen, J. Human bcrabl gene has a lethal effect on embryogenesis. Transgenic Res. 1, 45–53 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Castellanos, A. et al. A BCR–ABL(p190) fusion gene made by homologous recombination causes B-cell acute lymphoblastic leukemias in chimeric mice with independence of the endogenous bcr product. Blood 90, 2168–2174 (1997).

    CAS  PubMed  Google Scholar 

  34. Heisterkamp, N. et al. Acute leukemia in bcr/abl transgenic mice. Nature 344, 251–253 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Voncken, J. W. et al. Restricted oncogenicity of BCR/ABL p190 in transgenic mice. Cancer Res. 52, 4534–4539 (1992).

    CAS  PubMed  Google Scholar 

  36. Voncken, J. W. et al. BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. Blood 86, 4603–4611 (1995).

    CAS  PubMed  Google Scholar 

  37. Honda, H. et al. Expression of p210bcr–abl by metallothionein promoter induced T-cell leukemia in transgenic mice. Blood 85, 2853–2861 (1995).

    CAS  PubMed  Google Scholar 

  38. Huettner, C. S., Zhang, P., Van Etten, R. A. & Tenen, D. G. Reveribility of acute B-cell leukemia induced by BCR–ABL1. Nature Genet. 24, 57–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Huettner, C. S. et al. Inducible expression of BCR/ABL using human CD34 regulatory elements results in a megakaryocytic myeloproliferative syndrome. Blood 102, 3363–3370 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Koschmieder, S. et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR–ABL leukaemogenesis. Blood 105, 324–334 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Faderl, S. et al. The biology of chronic myeloid leukemia. N. Engl. J. Med. 341, 164–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Deininger, M. W., Goldman, J. M. & Melo, J. V. The molecular biology of chronic myeloid leukemia. Blood 96, 3343–3356 (2000).

    CAS  PubMed  Google Scholar 

  43. Ahuja, H. G., Popplewell, L., Tcheurekdjian, L. & Slovak, M. L. NUP98 gene rearrangements and the clonal evolution of chronic myelogenous leukemia. Genes Chromosom. Cancer 30, 410–415 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Colovic, M., Jankovic, G., Bila, J., Djordjevic, V. & Wiernik, P. H. Inversion of chromosome 16 in accelerated phase of chronic myeloid leukaemia: report of a case and review of the literature. Med. Oncol. 15, 199–201 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. de Bruijn, M. F. & Speck, N. A. Core-binding factors in hematopoiesis and immune function. Oncogene 23, 4238–4248 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Hirai, H. The transcription factor Evi-1. Int. J. Biochem. Cell Biol. 31, 1367–1371 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Ihle, J. N., Morishita, K., Matsugi, T. & Bartholomew, C. Insertional mutagenesis and transformation of hematopoietic stem cells. Prog. Clin. Biol. Res. 352, 329–337 (1990).

    CAS  PubMed  Google Scholar 

  48. Cuenco, G. M., Nucifora, G. & Ren, R. Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a novel model for human AML. Proc. Natl Acad. Sci. USA 97, 1760–1765 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cuenco, G. M. & Ren, R. Cooperation of BCR-ABL and AML1/MDS1/EVI1 in blocking myeloid differentiation and rapid induction of an acute myelogenous leukemia. Oncogene 20, 8236–8248 (2001). The first report of cooperation of BCR–ABL and an oncogenic transcription factor in induction of a myeloblastic leukaemia in mice. Together, these factors block myeloid differentiation, transforming CML from the chronic phase to blast phase.

    Article  CAS  PubMed  Google Scholar 

  50. Dash, A. B. et al. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc. Natl Acad. Sci. USA 99, 7622–7627 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004). Reported that GMPs in blast-phase CML undergo self renewal. The results indicate that GMPs are transformed into leukaemic stem cells during blast-phase CML.

    Article  CAS  PubMed  Google Scholar 

  52. Ghaffari, S., Daley, G. Q. & Lodish, H. F. Growth factor independence and BCR/ABL transformation: promise and pitfalls of murine model systems and assays. Leukemia 13, 1200–1206 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Ren, R. Modeling the dosage effect of oncogenes in leukaemogenesis. Curr. Opin. Hematol. 11, 25–34 (2004).

    Article  PubMed  Google Scholar 

  54. Gross, A. W., Zhang, X. & Ren, R. Bcr–Abl with an SH3 deletion retains the ability to induce a myeloproliferative disease in mice, yet c-Abl activated by an sh3 deletion induces only lymphoid malignancy. Mol. Cell. Biol. 19, 6918–6928 (1999). Showed that activation of the ABL kinase activity is not sufficient for BCR–ABL to induce CML-like disease in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gross, A. W. & Ren, R. Bcr–Abl has a greater intrinsic capacity than v-Abl to induce the neoplastic expansion of myeloid cells in vivo. Oncogene 19, 6286–6296 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. McWhirter, J. R., Gaalasso, D. L. & Wang, J. Y. J. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr–Abl oncoproteins. Mol. Cell. Biol. 13, 7587–7595 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, X., Subrahmanyam, R., Wong, R., Gross, A. W. & Ren, R. The NH2-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr–Abl. Mol. Cell. Biol. 21, 840–853 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. He, Y. et al. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 99, 2957–5768 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Smith, K. M., Yacobi, R. & Van Etten, R. A. Autoinhibition of Bcr–Abl through its SH3 domain. Mol. Cell 12, 27–37 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pendergast, A. M. et al. BCR–ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the Grb-2 adaptor protein. Cell 75, 175–185 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Puil, L. et al. Bcr–Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J. 13, 764–773 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sattler, M. et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 1, 479–492 (2002). Described the critical role of GAB2 in mediating the ability of BCR–ABL to confer cytokine-independent growth of primary myeloid cells.

    Article  CAS  PubMed  Google Scholar 

  63. Million, R. P. & Van Etten, R. A. The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 96, 664–670 (2000).

    CAS  PubMed  Google Scholar 

  64. Goga, A., McLaughlin, J., Afar, D. E., Saffran, D. C. & Witte, O. N. Alternative signals to RAS for hematopoietic transformation by the Bcr–Abl oncogene. Cell 82, 981–988 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, X., Wong, R., Hao, S. X., Pear, W. S. & Ren, R. The SH2 domain of bcr–Abl is not required to induce a murine myeloproliferative disease; however, SH2 signaling influences disease latency and phenotype. Blood 97, 277–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Roumiantsev, S., de Aos, I. E., Varticovski, L., Ilaria, R. L. & Van Etten, R. A. The src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukaemogenesis or activation of phosphatidylinositol 3-kinase. Blood 97, 4–13 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Prywes, R., Foulkes, J. G., Rosenberg, N. & Baltimore, D. Sequences of the A-MuLV protein needed for fibroblast and lymphoid cell transformation. Cell 34, 569–579 (1983).

    Article  CAS  PubMed  Google Scholar 

  68. Wertheim, J. A. et al. Localization of BCR–ABL to F-actin regulates cell adhesion but does not attenuate CML development. Blood 102, 2220–2228 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Dai, Z., Kerzic, P., Schroeder, W. G. & McNiece, I. K. Deletion of the Src homology 3 domain and C-terminal proline-rich sequences in Bcr-Abl prevents Abl interactor 2 degradation and spontaneous cell migration and impairs leukaemogenesis. J. Biol. Chem. 276, 28954–28960 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Nieborowska-Skorska, M., Hoser, G., Kossev, P., Wasik, M. A. & Skorski, T. Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukaemogenesis. Blood 99, 4531–4539 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Wong, S. & Witte, O. N. The BCR–ABL story: bench to bedside and back. Annu. Rev. Immunol. 22, 247–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Jiang, X., Lopez, A., Holyoake, T., Eaves, A. & Eaves, C. Autocrine production and action of IL-3 and granulocyte colony- stimulating factor in chronic myeloid leukemia. Proc. Natl Acad. Sci. USA 96, 12804–12809 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sexl, V. et al. Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood 96, 2277–2283 (2000).

    CAS  PubMed  Google Scholar 

  74. Dinulescu, D. M. et al. c-CBL is not required for leukemia induction by Bcr–Abl in mice. Oncogene 22, 8852–8860 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Li, S. et al. Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood 97, 1442–1450 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Hu, Y. et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR–ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nature Genet. 36, 453–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Ptasznik, A., Nakata, Y., Kalota, A., Emerson, S. G. & Gewirtz, A. M. Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR–ABL1+ leukemia cells. Nature Med. 10, 1187–1189 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    Article  CAS  Google Scholar 

  79. Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nature Genet. 29, 465–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nature Genet. 34, 148–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Kosaki, K. et al. PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) mutations in seven Japanese patients with Noonan syndrome. J. Clin. Endocrinol. Metab. 87, 3529–3533 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Neel, B. G., Gu, H. & Pao, L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28, 284–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Bos, J. L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  84. Braun, B. S. et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc. Natl Acad. Sci. USA 101, 597–602 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Chan, I. T. et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J. Clin. Invest. 113, 528–538 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87, 307–317 (1996). Reported the striking discovery that Icsbp -null mice develop of a CML-like disease, indicating that this protein is a tumour suppressor.

    Article  CAS  PubMed  Google Scholar 

  87. Tamura, T., Nagamura-Inoue, T., Shmeltzer, Z., Kuwata, T. & Ozato, K. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages. Immunity 13, 155–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Hao, S. X. & Ren, R. Expression of ICSBP is downregulated in Bcr–Abl-induced murine CML-like disease, and forced coexpression of ICSBP inhibits the Bcr–Abl-induced myeloproliferative disorder. Mol. Cell. Biol. 20, 1149–1161 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schmidt, M. et al. Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood 91, 22–29 (1998).

    CAS  PubMed  Google Scholar 

  90. Schorpp-Kistner, M., Wang, Z. Q., Angel, P. & Wagner, E. F. JunB is essential for mammalian placentation. EMBO J. 18, 934–948 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Passegue, E., Jochum, W., Schorpp-Kistner, M., Mohle-Steinlein, U. & Wagner, E. F. Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking junB expression in the myeloid lineage. Cell 104, 21–32 (2001). Showed that specific inactivation of JUNB in haematopoietic cells led to the development of a CML-like disease in mice. The results indicate that JUNB is a tumour suppressor.

    Article  CAS  PubMed  Google Scholar 

  92. Passegue, E., Wagner, E. F. & Weissman, I. L. JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 119, 431–443 (2004). Reported that induction of CML-like disease by JUNB inactivation only occurs in JUNB-deficient long-term self-renewing haematopoietic stem cells. The results indicated the haematopoietic stem-cell origin of CML.

    Article  CAS  PubMed  Google Scholar 

  93. Bruchova, H., Borovanova, T., Klamova, H. & Brdicka, R. Gene expression profiling in chronic myeloid leukemia patients treated with hydroxyurea. Leuk. Lymphoma 43, 1289–1295 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Yang, M. Y., Liu, T. C., Chang, J. G., Lin, P. M. & Lin, S. F. JunB gene expression is inactivated by methylation in chronic myeloid leukemia. Blood 101, 3205–3211 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Ishida, D. et al. Myeloproliferative stem cell disorders by deregulated Rap1 activation in SPA-1-deficient mice. Cancer Cell 4, 55–65 (2003). Described the targeted inactivation of SIPA1, which led to the development of a CML-like disease in mice.

    Article  CAS  PubMed  Google Scholar 

  96. Stork, P. J. Does Rap1 deserve a bad Rap? Trends Biochem. Sci. 28, 267–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Mizuchi, D. et al. BCR/ABL activates Rap1 and B-Raf to stimulate the MEK/Erk signaling pathway in hematopoietic cells. Biochem. Biophys. Res. Commun. 326, 645–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Helgason, C. D. et al. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 12, 1610–1620 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sattler, M. et al. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol. Cell. Biol. 19, 7473–7480 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jiang, X. et al. Evidence for a positive role of SHIP in the BCR–ABL-mediated transformation of primitive murine hematopoietic cells and in human chronic myeloid leukemia. Blood 102, 2976–2984 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Graham, S. M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99, 319–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Roche-Lestienne, C. et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100, 1014–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Holtz, M. S. et al. Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood 99, 3792–3800 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Wertheim, J. A. et al. BCR–ABL-induced adhesion defects are tyrosine kinase-independent. Blood 99, 4122–4130 (2002). Showed that ABL-kinase-deficient BCR–ABL retains the ability to dysregulate cell adhesion.

    Article  CAS  PubMed  Google Scholar 

  105. Huntly, B. J. et al. MOZ–TIF2, but not BCR–ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596 (2004). Demonstrated that some, but not all, leukaemia-associated oncogenes could confer properties of leukaemic stem cells to haematopoietic progenitors destined to undergo apoptosis.

    Article  CAS  PubMed  Google Scholar 

  106. Yoshida, C. & Melo, J. V. Biology of chronic myeloid leukemia and possible therapeutic approaches to imatinib-resistant disease. Int. J. Hematol. 79, 420–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Goldman, J. M. Chronic myeloid leukemia-still a few questions. Exp. Hematol. 32, 2–10 (2004).

    Article  PubMed  Google Scholar 

  108. Skorski, T. BCR/ABL regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability. Oncogene 21, 8591–8604 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Holyoake, T. L., Jiang, X., Drummond, M. W., Eaves, A. C. & Eaves, C. J. Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia. Leukemia 16, 549–558 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Shah, N. P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Sawyers, C. L. et al. Hematologic and cytogenetic responses in Imatinib-resistant chronic phase chronic myelogenous leukemia patients treated with the dual SRC/ABL kinase inhibitor BMS-354825: results from a phase I dose escalation study. Blood 104, 4a (2004).

    Article  Google Scholar 

  112. Vigneri, P. & Wang, J. Y. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR–ABL tyrosine kinase. Nature Med. 7, 228–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. McWhirter, J. R. & Wang, J. Y. J. An actin-binding function contributes to transformation by the Bcr–Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J. 12, 1533–1546 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vickers, M. Estimation of the number of mutations necessary to cause chronic myeloid leukaemia from epidemiological data. Br. J. Haematol. 94, 1–4 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Lichtman, M. Chronic myelogenous leukemia and related disorders. in Williams Helatology (eds Beutler, E., Lichtman, M. A., Coller, B. S. & Kipps, T. J.) 298–324 (McGraw–Hill, New York, 1995).

    Google Scholar 

  116. Biernaux, C., Loos, M., Sels, A., Huez, G. & Stryckmans, P. Detection of major bcrabl gene expression at a very low level in blood cells of some healthy individuals. Blood 86, 3118–3122 (1995).

    CAS  PubMed  Google Scholar 

  117. Bose, S., Deininger, M., Gora-Tybor, J., Goldman, J. M. & Melo, J. V. The presence of typical and atypical BCRABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92, 3362–3367 (1998).

    CAS  PubMed  Google Scholar 

  118. Takahashi, N., Miura, I., Saitoh, K. & Miura, A. B. Lineage involvement of stem cells bearing the philadelphia chromosome in chronic myeloid leukemia in the chronic phase as shown by a combination of fluorescence-activated cell sorting and fluorescence in situ hybridization. Blood 92, 4758–4763 (1998).

    CAS  PubMed  Google Scholar 

  119. Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859–871 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Harrison, S. C. Variation on an Src-like theme. Cell 112, 737–740 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Hantschel, O. et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112, 845–857 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to apologize for not being able to cite all the relevant literature owing to limited space. I would also like to acknowledge grants from the National Cancer Institute and the American Cancer Society.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

ABL

AML1

ARG

BCR

BRAF

CBFβ

CDKN2A

EVI1

GAB2

GRB2

HOXA9

ICSBP

JUNB

KRAS

MOZ

MYC

NRAS

NUP98

RB

SHIP

SHP2

SIPA1

SMMHC

SOS

TIF2

TP53

National Cancer Institute

acute myelogenous leukaemia

chronic myelogenous leukaemia

OMIM

Noonan syndrome

FURTHER INFORMATION

Cancer medical terms

Glossary

EXTRAMEDULLARY

Outside the bone marrow, as in the spleen, liver or lymph nodes.

COMPLETE CYTOGENETIC RESPONSE

Mononuclear bone-marrow cells shown to be negative for t(9;22)(q34;q11), as determined by cytogenetic analysis or fluorescence in situ hybridization analysis.

CD34

A cell-surface protein expressed by haematopoietic stem cells (HSCs), haematopoietic progenitor cells and endothelial cells, and used as a marker to isolate human HSCs.

MYELOPROLIFERATIVE DISORDER

Characterized by high peripheral-blood counts with granulocyte predominance, hepatosplenomegaly (enlarged liver and spleen) and pulmonary haemorrhages, owing to extensive granulocyte infiltration.

B-CELL ACUTE LYMPHOBLASTIC LEUKAEMIA

Characterized by high peripheral-blood cell counts, bloody pleural effusion (chest-cavity fluid) that contains B-lymphoblastic cells, and an enlarged lymph node.

T-CELL ACUTE LYMPHOBLASTIC LEUKAEMIA

Characterized by high peripheral-blood cell counts, bloody pleural effusion that contains T-lymphoblastic cells and enlarged thymus.

THROMBOCYTOSIS

Increased numbers of platelets in the peripheral blood.

INTERLEUKIN-3

A haematopoietic growth factor that promotes survival and activation of many lineages of cells in the haematopoietic system — particularly in mast and basophil development and immunity in cases of parasitic infection.

GRANULOCYTE COLONY-STIMULATING FACTOR

Also known as granulocyte growth factor, it is important for the development of neutrophils and haematopoietic progenitors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, R. Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5, 172–183 (2005). https://doi.org/10.1038/nrc1567

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing