Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Radiation and the microenvironment – tumorigenesis and therapy

Key Points

  • Exposure to ionizing radiation increases the risk of developing cancer at low doses and is used to control cancer at high doses.

  • Ionizing radiation can elicit an 'activated' phenotype in some cells that promotes rapid and persistent remodelling of the extracellular matrix, through the induction of proteases and growth factors, as well as chronic production of reactive oxygen species.

  • The rapid and dynamic cell biology that occurs in irradiated tissues indicates the existence of a microenvironment-mediated damage-response programme. Some mechanisms of the ionizing radiation-induced microenvironment include chronic inflammation and persistent production of transforming growth factor-β.

  • These cellular and tissue responses to ionizing radiation can have non-targetted effects on non-irradiated cells, such as induction of genomic instability and neoplastic progression.

  • The functional consequences of exposing an organism to ionizing radiation are a product of DNA damage, cell loss and altered tissue microenvironments that promote carcinogenesis and might affect responses to anticancer therapies.

Abstract

Radiation rapidly and persistently alters the soluble and insoluble components of the tissue microenvironment. This affects the cell phenotype, tissue composition and the physical interactions and signalling between cells. These alterations in the microenvironment can contribute to carcinogenesis and alter the tissue response to anticancer therapy. Examples of these responses and their implications are discussed with a view to therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ionizing radiation, the microenvironment and cellular responses.

Similar content being viewed by others

References

  1. Barcellos-Hoff, M. H. & Brooks, A. L. Extracellular signaling via the microenvironment: a hypothesis relating carcinogenesis, bystander effects and genomic instability. Radiat. Res. 156, 618–627 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978).

    CAS  PubMed  Google Scholar 

  3. Whetton, A. D. & Graham, G. J. Homing and mobilization in the stem cell niche. Trends Cell Biol. 9, 233–238 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Dent, P., Yacoub, A., Fisher, P. B., Hagan, M. P. & Grant, S. MAPK pathways in radiation responses. Oncogene 22, 5885–5896 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. McBride, W. H. et al. A sense of danger from radiation. Radiat. Res. 162, 1–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Fuks, Z. Modulation of the radiation response in vitro and in vivo by basic fibroblast growth factor. Proc. Am. Assoc. Cancer Res. 35, 709–710 (1994).

    Google Scholar 

  7. Anscher, M. S., Crocker, I. R. & Jirtle, R. L. Transforming growth factor β1 expression in irradiated liver. Radiat. Res. 122, 77–85 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Barcellos-Hoff, M. H., Derynck, R., Tsang, M. L. S. & Weatherbee, J. A. Transforming growth factor-β activation in irradiated murine mammary gland. J. Clin. Invest. 93, 892–899 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, J., Zheng, H., Sung, C. C., Richter, K. K. & Hauer-Jensen, M. Cellular sources of transforming growth factor-β isoforms in early and chronic radiation enteropathy. Am. J. Pathol. 153, 1531–1540 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lawrence, D. A., Pircher, R. & Jullien, P. Conversion of a high molecular weight latent β-TGF from chicken embryo fibroblasts into a low molecular weight active β-TGF under acidic conditions. Biochem. Biophys. Res. Comm. 133, 1026–1034 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Annes, J. P., Munger, J. S. & Rifkin, D. B. Making sense of latent TGFβ activation. J. Cell Sci. 116, 217–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Barcellos-Hoff, M. H. & Dix, T. A. Redox-mediated activation of latent transforming growth factor-β1. Mol. Endocrin. 10, 1077–1083 (1996).

    CAS  Google Scholar 

  13. Bhowmick, N. A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Ewan, K. B. et al. Transforming growth factor-β1 mediates cellular response to DNA damage in situ. Cancer Res. 62, 5627–5631 (2002).

    CAS  PubMed  Google Scholar 

  15. Booth, C. & Potten, C. S. Gut instincts: thoughts on intestinal epithelial stem cells. J. Clin. Invest. 105, 1493–1499 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koyama, S. Y. & Podolsky, D. K. Differential expression of transforming growth factors α and β in rat intestinal epithelial cells. J. Clin. Invest. 83, 1768–1773 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barnard, J. A., Beauchamp, R. D., Coffey, R. J. & Moses, H. L. Regulation of intestinal epithelial cell growth by transforming growth factor type β. Proc. Natl Acad. Sci. USA 86, 1578–1582 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Potten, C. S., Booth, D. & Haley, J. D. Pretreatment with transforming growth factor β-3 protects small intestinal stem cells against radiation damage in vivo. Br. J. Cancer 75, 1454–1459 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Graham, G. J. & Wright, E. G. Haemopoietic stem cells: their heterogeneity and regulation. Intl J. Exp. Pathol. 78, 197–218 (1997).

    Article  CAS  Google Scholar 

  20. Li, W., Wang, G., Cui, J., Xue, L. & Cai, L. Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation. Exp. Hematol. 32, 1088–1096 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Herodin, F., Bourin, P., Mayol, J. F., Lataillade, J. J. & Drouet, M. Short-term injection of antiapoptotic cytokine combinations soon after lethal γ-irradiation promotes survival. Blood 101, 2609–2616 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, Y., Zhan, Y., Burke, K. A. & Anderson, W. F. Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells. Exp. Hematol. 33, 428–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Uchimura, E., Watanabe, N., Niwa, O., Muto, M. & Kobayashi, Y. Transient infiltration of neutrophils into the thymus in association with apoptosis induced by whole-body X-irradiation. J. Leuk. Biol. 67, 780–784 (2000).

    Article  CAS  Google Scholar 

  25. Lorimore, S. A., Coates, P. J., Scobie, G. E., Milne, G. & Wright, E. G. Inflammatory-type responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects? Oncogene 20, 7085–7095 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida, K., Nemoto, K., Nishimura, M. & Seki, M. Exacerbating factors of radiation-induced myeloid leukemogenesis. Leukemia Res. 17, 437–440 (1993).

    Article  CAS  Google Scholar 

  27. Walburg, H. E., Congreve, G. U. & Upton, A. C. Influence of microbial environment on development of myeloid leukemia in X-irradiated RFM mice. Intl J. Cancer 3, 150–154 (1968).

    Article  Google Scholar 

  28. Neriishi, K., Nakashima, E. & Delongchamp, R. R. Persistent subclinical inflammation among A-bomb survivors. Intl J. Radiat. Biol. 77, 475–482 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Hayashi, T. et al. Radiation dose-dependent increases in inflammatory response markers in A-bomb survivors. Intl J. Radiat. Biol. 79, 129–136 (2003). References 28 and 29 are epidemiological studies that report the long-term health effects, potentially mediated by low-level chronic inflammation, in individuals 50 years after IR exposure.

    Article  CAS  PubMed  Google Scholar 

  30. Emerit, I. Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. Free Rad. Biol. Med. 16, 99–109 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Kadhim, M. A. et al. Transmission of chromosomal instability after plutonium α-particle irradiation. Nature 355, 738–740 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Kadhim, M. A. et al. α-particle-induced chromosomal instability in human bone marrow cells. Lancet 344, 987–988 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Gowans, I. D., Lorimore, S. A., McIlrath, J. M. & Wright, E. G. Genotype-dependent induction of transmissible chromosomal instability by γ-radiation and the benzene metabolite hydroquinone. Cancer Res. 65, 3527–3530 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Lorimore, S. A. et al. Chromosomal instability in the descendants of unirradiated surviving cells after α-particle irradiation. Proc. Natl Acad. Sci. USA 95, 5730–5733 (1998). This study reports that IR with α-particles can elicit persistent genomic instability in non-irradiated cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  Google Scholar 

  36. Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, C., Boylan, M. T., Evans, C. A., Whetton, A. D. & Wright, E. G. Application of two-dimensional difference gel electrophoresis to studying bone marrow macrophages and their in vivo responses to ionizing radiation. J. Proteome Res. 4, 1371–1380 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Watson, G. E, Pocock, D. A., Papworth, D., Lorimore, S. A. & Wright, E. G. In vivo chromosomal instability and transmissible aberrations in the progeny of haemopoietic stem cells induced by high- and low-LET radiations. Intl J. Radiat. Biol. 77, 409–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Geske, F. J., Monks, J., Lehman, L. & Fadok, V. A. The role of the macrophage in apoptosis: hunter, gatherer, and regulator. Intl J. Hematol. 76, 16–26 (2002).

    Article  Google Scholar 

  44. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Rev. Immunol. 2, 965–975 (2002).

    Article  CAS  Google Scholar 

  45. Giles, K. M., Hart, S. P., Haslett, C., Rossi, A. G. & Dransfield, I. An appetite for apoptotic cells? Controversies and challenges. Br. J. Haematol. 109, 1–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Gregory, C. D. CD14-dependent clearance of apoptotic cells: relevance to the immune system. Curr. Opin. Immunol. 12, 27–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Barcellos-Hoff, M. H. The potential influence of radiation-induced microenvironments in neoplastic progression. J. Mammary Gland Biol. Neoplasia 3, 165–175 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260 (2000). These experiments demonstrated that persistent IR-induced changes in the tissue microenvironment affect neoplastic progression of non-irradiated pre-malignant epithelial cells.

    CAS  PubMed  Google Scholar 

  49. Morgan, J. E. et al. Myogenic cell proliferation and generation of a reversible tumorigenic phenotype are triggered by preirradiation of the recipient site. J. Cell Biol. 157, 693–702 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McCann, S. & Wright, E. Donor leukaemia: perhaps a more common occurrence than we thought! Bone Marrow Transplant. 32, 455–457 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Greenberger, J. S. et al. Effects of irradiation of CBA/CA mice on hematopoietic stem cells and stromal cells in long-term bone marrow cultures. Leukemia 10, 514–527 (1996).

    CAS  PubMed  Google Scholar 

  52. Grande, T. & Bueren, J. A. Involvement of the bone marrow stroma in the residual hematopoietic damage induced by irradiation of adult and young mice. Exp. Hematol. 22, 1283–1287 (1994).

    CAS  PubMed  Google Scholar 

  53. Greenberger, J. et al. Humoral and cell surface interactions during γ-irradiation leukemogenesis in vitro. Exp. Hematol. 20, 92–102 (1992).

    CAS  PubMed  Google Scholar 

  54. Duhrsen, U. & Metcalf, D. A model system for leukemic transformation of immortalized hemopoietic cells in irradiated recipient mice. Leukemia 2, 329–333 (1988).

    CAS  PubMed  Google Scholar 

  55. Duhrsen, U. & Metcalf, D. Effects of irradiation of recipient mice on the behavior and leukemogenic potential of factor-dependent hematopoietic cell lines. Blood 75, 190–197 (1990).

    CAS  PubMed  Google Scholar 

  56. Gorbunov, N. V. et al. Activation of the nitric oxide synthase 2 pathway in the response of bone marrow stromal cells to high doses of ionizing radiation. Radiat. Res. 154, 73–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Roberts, A. B. & Wakefield, L. M. The two faces of transforming growth factor β in carcinogenesis. Proc. Natl Acad. Sci. USA 100, 8621–8623 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ronnov-Jessen, L., Petersen, O. W., Kotelianski, V. & Bissell, M. J. The origin of the myofibroblasts in breast: recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Invest. 95, 859–873 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Wever, O. et al. Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-β or wounding. J. Cell Sci. 117, 4691–4703 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Herskind, C. & Rodemann, H. P. Spontaneous and radiation-induced differentiationof fibroblasts. Exp. Gerontol. 35, 747–755 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Cha, R. S., Thilly, W. G. & Zarbl, H. N-Nitroso-N-methylurea-induced rat mammary tumors arise from cells with preexisting oncogenic Hras1 gene mutations. Proc. Natl Acad. Sci. USA 91, 3749–3753 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maffini, M. V., Soto, A. M., Calabro, J. M., Ucci, A. A. & Sonnenschein, C. The stroma as a crucial target in rat mammary gland carcinogenesis. J. Cell Sci. 117, 1495–1502 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Medina, D. & Kittrell, F. S. Stroma is not a major target in 7, 12-dimethlybenzanthracene mediated tumorigenesis of mouse mammary preneoplasia. J. Cell Sci. 118, 123–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Dolberg, D. S., Holingworth, R., Hertle, M. & Bissell, M. J. Wounding and its role in RSV-mediated tumor formation. Science 230, 676–678 (1985).

    Article  CAS  PubMed  Google Scholar 

  65. Skobe, M. & Fusenig, N. E. Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc. Natl Acad. Sci. USA 95, 1050–1055 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sternlicht, M. D. et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137–146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sympson, C. J., Bissell, M. J. & Werb, Z. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1. Semin. Cancer Biol. 6, 159–163 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Moore, G. H., Schiller, J. E. & Moore, G. K. Radiation-induced histopathologic changes of the breast: the effects of time. Am. J. Surg. Pathol. 28, 47–53 (2004).

    Article  PubMed  Google Scholar 

  69. Girling, A. C., Hanby, A. M. & Millis, R. R. Radiation and other pathological changes in breast tissue after conservation treatment for carcinoma. J. Clin. Pathol. 43, 152–156 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schnitt, S. J., Connolly, J. L., Harris, J. R. & Cohen, R. B. Radiation-induced changes in the breast. Hum. Pathol. 15, 545–550 (1984).

    Article  CAS  PubMed  Google Scholar 

  71. Penney, D. P. & Rosenkrans, W. A. Jr. Cell–cell matrix interactions in induced lung injury I. The effects of X-irradiation on basal laminar proteoglycans. Radiat. Res. 99, 410–419 (1984).

    Article  CAS  PubMed  Google Scholar 

  72. Barcellos-Hoff, M. H. Radiation-induced transforming growth factor β and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res. 53, 3880–3886 (1993).

    CAS  PubMed  Google Scholar 

  73. Remy, J., Wegrowski, J., Crechet, F., Marin, M. & Daburon, F. Long-term overproduction of collagen in radiation-induced fibrosis. Radiat. Res. 125, 14–19 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Friedman, N. The effects of irradiation on breast cancer and the breast. CA Cancer J. Clin. 38, 368–371 (1988).

    Article  CAS  PubMed  Google Scholar 

  75. Leith, J. T. & Michelson, S. Tumor radiocurability: relationship to intrinsic tumor heterogeneity and to the tumor bed effect. Invasion Metastasis 10, 329–351 (1990).

    CAS  PubMed  Google Scholar 

  76. Hercbergs, A., Werner, A. & Brenner, H. J. Reduced thoracic vertebrae metastases following post mastectomy parasternal irradiation. Intl J. Radiat. Oncol. Biol. Phys. 11, 773–776 (1985).

    Article  CAS  Google Scholar 

  77. Bagshaw, M. A., Kaplan, I. D., Valdagni, R. & Cox, R. S. Radiation treatment of prostate bone metastases and the biological considerations. Adv. Exp. Med. Biol. 324, 255–268 (1992).

    Article  CAS  PubMed  Google Scholar 

  78. Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Paris, F. et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293, 293–297 (2001). This study described a novel mechanism of tissue damage through the loss of endothelial cells from IR-induced signalling through the ceramide pathway.

    Article  CAS  PubMed  Google Scholar 

  80. Flanders, K. C. et al. Interference with transforming growth factor-β/ Smad3 signaling results in accelerated healing of wounds in previously irradiated skin. Am. J. Pathol. 163, 2247–2257 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rabbani, Z. N. et al. Soluble TGFβ type II receptor gene therapy ameliorates acute radiation-induced pulmonary injury in rats. Intl J. Radiat. Oncol. Biol. Phys. 57, 563–572 (2003).

    Article  CAS  Google Scholar 

  82. Xavier, S. et al. Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-β signaling by Halofuginone. J. Biol. Chem. 279, 15167–15176 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Anscher, M. S., Kong, F., Murase, T. & Jirtle, R. L. Normal tissue injury after cancer therapy is a local response exacerbated by an endocrine effect of TGFβ. Br. J. Radiat. 68, 331–333 (1995).

    Article  CAS  Google Scholar 

  84. Barcellos-Hoff, M. H. How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues. Radiat. Res. 150, S109–S120 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Barcellos-Hoff, M. H. & Costes, S. V. A systems biology approach to multicellular and multi-generational radiation responses. Mutat. Res. (In the press).

  86. Greenberger, J. S. et al. Role of bone marrow stromal cells in irradiation leukemogenesis. Acta Haematologica 96, 1–15 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Trosko, J. E. Hierarchcal and cybernetic nature of biologic systems and their relevance to homeostatic adaptation to low-level exposures to oxidative stress-inducing agents. Environ. Health Perspect. 106, 331–339 (1998).

    PubMed  PubMed Central  Google Scholar 

  88. Coates, P. J., Lorimore, S. A. & Wright, E. G. Damaging and protective cell signalling in the untargeted effects of ionizing radiation. Mutat. Res. 568, 5–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Flaumenhaft, R. & Rifkin, D. B. The extracellular regulation of growth factor action. Mol. Biol. Cell 3, 1057–1065 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brown, P. D., Wakefield, L. M., Levinson, A. D. & Sporn, M. B. Physiochemical activation of recombinant latent transforming growth factor-β's 1, 2, and 3. Growth Factors 3, 35–43 (1990).

    Article  CAS  PubMed  Google Scholar 

  91. DeOme, K. B., Faulkin, L. J. J., Bern, H. A. & Blair, P. B. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 19, 515–520 (1959).

    CAS  PubMed  Google Scholar 

  92. Danielson, K. G., Oborn, C. J., Durban, E. M., Buetel, J. S. & Medina, D. Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. Proc. Natl Acad. Sci. USA 81, 3756–3760 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Namba, M., Fukushima, F. & Kimoto, T. Effects of feeder layers made of human, mouse, hamster, and rat cells on the cloning efficiency of transformed human cells. In Vitro Cell Dev. Biol. 18, 469–475 (1982).

    Article  CAS  Google Scholar 

  94. Tsai, K. K, Chang, E. Y., Little, S. B & Yuan, S. M. Cellular mechanisms for low-dose ionizing radiation–induced perturbation of the breast tissue microenvironment. Cancer Res. 65, 6734–6744 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Moran, E. S., Elshaikh, M. A. & Lawrence, T. S. Radiotherapy: what can be achieved by technical improvements in dose delivery? Lancet Oncol. 6, 51–58 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Noelle F. Metting for assistance with preparing Box 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Helen Barcellos-Hoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

epidermal growth factor

p53

TGFβ1

TGFβ3

National Cancer Institute

breast cancer

leukaemia

FURTHER INFORMATION

Cytokines Online Pathfinder Encyclopaedia – TGFβ

TGFβ signalling pathway

Washington State University Low Dose Radiobiology Programme

Glossary

IONIZING RADIATION

Energy from isotopic decay or produced by electromagnetic excitation that is capable of producing ionizations, directly or indirectly, while traversing matter.

CYTOKINES, GROWTH FACTORS AND CHEMOKINES

Proteins that convey information between cells, through secretion and interaction with receptors. Signalling by these molecules regulates cell proliferation, differentiation, motility, adhesion and apoptosis.

PARENCHYMA

Organ compartment that performs the function of a tissue — for example, tissue-specific epithelium.

STROMA

Organ compartment serving as the connective tissue framework; includes fibroblasts, immune defense cells and fat cells.

EXTRACELLULAR MATRIX

(ECM). An insoluble protein scaffold on which cells reside. The ECM provides the structure and attachment sites, and signals through cell surface receptors. Epithelial cells, endothelial cells and adipocytes rest on a specialized ECM called the basement membrane. Interstitial ECM is collagen-rich.

REACTIVE OXYGEN SPECIES

Highly reactive chemical radicals generated as products of oxygen degradation.

DIRECT EFFECTS

Interaction of energy with matter, resulting in ionization.

INDIRECT EFFECTS

Interaction of energy with water, resulting in production of reactive oxygen species.

X-RAYS

Sparsely ionizing radiation that has similar effects to γ-rays, and is used in radiotherapy. X-rays result from electron energy-transitions with the atom or through the deceleration of high kinetic-energy electrons.

γ-RAYS

Sparsely ionizing radiation that has similar effects to X-rays, and is used in radiotherapy. γ-Radiation results from excited and unstable nuclei of radioactive materials.

STEM-CELL NICHE

The restricted, specialized microenvironment that mediates stem-cell expansion and differentiation.

MARGINATION

Blood vessels outlined with cuffs of neutrophils.

CLASTOGENIC

Biological factors that increase markers of DNA damage such as mutation frequency, chromosome aberrations or sister chromatid exchange.

α-PARTICLES

Short range, high linear-energy transfer radiation from isotopic decay that gives rise to clusters of ionized molecules.

TISSUE REMODELLING

Activation process of extracellular matrix (ECM) degradation and production that affects the turnover and composition of ECM proteins. This process accompanies wound healing, inflammation and large scale apoptotic events, such as mammary gland involution. It can be induced by ionizing radiation, either subclinically or at a pathological level, preceding fibrosis.

ALLOGENEIC

When donor and recipient tissues share the same major histocompatibilty complex antigens.

SYNGENEIC

Genetically identical — for example, fully inbred mouse strains.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcellos-Hoff, M., Park, C. & Wright, E. Radiation and the microenvironment – tumorigenesis and therapy. Nat Rev Cancer 5, 867–875 (2005). https://doi.org/10.1038/nrc1735

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1735

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing