Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A PANorama of PAX genes in cancer and development

Key Points

  • An emerging role for several paired box (Pax) genes during development is the prevention of terminal differentiation and maintenance of a progenitor cell state, while also inducing cell-lineage commitment.

  • The involvement of tumour-associated Pax gene expression in promoting cell proliferation and survival is consistent with in vitro observations of tumour cell death induced by Pax-gene knockdown.

  • Five Pax genes, representing subgroups II (PAX2, PAX5 and PAX8) and III (PAX3 and PAX7) of the four Pax family subgroups, are often expressed in a wide range of cancer types.

  • Rearrangements of four of these Pax genes, PAX3, PAX5, PAX7 and PAX8, are associated with characteristic chromosomal translocations that occur in specific tumours.

  • Pax genes in subgroups II and III confer cell motility, cell survival and self-sufficiency in growth signals, which are characteristics that favour tumour progression. Conversely, Pax genes in subgroups I (PAX1 and PAX9) and IV (PAX4 and PAX6) are either less often involved in cancer or their expression is indicative of favourable prognosis, as observed for PAX6 and PAX9.

  • The structural basis of the four subgroups is proposed to explain why Pax genes in subgroups II and III, which contain an octapeptide region and at least a partial homeodomain, are associated with more aggressive cancers, and why the members of subgroups I and IV, possessing only one of these domains, are linked to a favourable outcome.

Abstract

Populations of self-renewing cells that arise during normal embryonic development harbour the potential for rapid proliferation, migration or transdifferentiation and, therefore, tumour generation. So, control mechanisms are essential to prevent rapidly expanding populations from malignant growth. Transcription factors have crucial roles in ensuring establishment of such regulation, with the Pax gene family prominent amongst these. This review examines the role of Pax family members during embryogenesis, and their contribution to tumorigenesis when subverted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cancer contribution of Pax family member subgroups.
Figure 2: Characteristics conferred by Pax genes that are favourable for tumour progression.
Figure 3: Pax control of differentiation.

Similar content being viewed by others

References

  1. Dahl, E., Koseki, H. & Balling, R. Pax genes and organogenesis. Bioessays 19, 755–765 (1997).

    CAS  PubMed  Google Scholar 

  2. Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786 (2000).

    CAS  PubMed  Google Scholar 

  3. Cai, Q. et al. Pax2 expression occurs in renal medullary epithelial cells in vivo and in cell culture, is osmoregulated, and promotes osmotic tolerance. Proc. Natl Acad. Sci. USA 102, 503–508 (2005).

    CAS  PubMed  Google Scholar 

  4. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  5. Yamaoka, T. et al. Diabetes and pancreatic tumours in transgenic mice expressing Pax 6. Diabetologia 43, 332–339 (2000).

    CAS  PubMed  Google Scholar 

  6. Muratovska, A., Zhou, C., He, S., Goodyer, P. & Eccles, M. R. Paired-box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene 22, 7989–7997 (2003).

    PubMed  Google Scholar 

  7. Bernasconi, M., Remppis, A., Fredericks, W. J., Rauscher, F. J., & Schafer, B. W. Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc. Natl Acad. Sci. USA 93, 13164–13169 (1996). The first report that apoptosis occurs on downregulation of Pax gene expression in cancer cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Scholl, F. A. et al. PAX3 is expressed in human melanomas and contributes to tumor cell survival. Cancer Res. 61, 823–826 (2001).

    CAS  PubMed  Google Scholar 

  9. He, S. J., Stevens, G., Braithwaite, A. W. & Eccles, M. R. Transfection of melanoma cells with antisense PAX3 oligonucleotides additively complements cisplatin-induced cytotoxicity. Mol. Cancer Ther. 4, 996–1003 (2005).

    CAS  PubMed  Google Scholar 

  10. Gnarra, J. R. & Dressler, G. R. Expression of Pax-2 in human renal cell carcinoma and growth inhibition by antisense oligonucleotides. Cancer Res. 55, 4092–4028 (1995).

    CAS  PubMed  Google Scholar 

  11. Buttiglieri, S. et al. Role of Pax2 in apoptosis resistance and proinvasive phenotype of Kaposi's sarcoma cells. J. Biol. Chem. 279, 4136–4143 (2004).

    CAS  PubMed  Google Scholar 

  12. Zhou, Y. H., Tan, F., Hess, K. R. & Yung, W. K. The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. Clin. Cancer Res. 9, 3369–3375 (2003).

    CAS  PubMed  Google Scholar 

  13. Gerber, J. K. et al. Progressive loss of PAX9 expression correlates with increasing malignancy of dysplastic and cancerous epithelium of the human oesophagus. J. Pathol. 197, 293–297 (2002).

    CAS  PubMed  Google Scholar 

  14. Zhou, Y. H. et al. PAX6 suppresses growth of human glioblastoma cells. J. Neurooncol. 71, 223–229 (2005). References 12–14 demonstrate the favourable effect that PAX6 or PAX9 expression has on cancer cell growth.

    CAS  PubMed  Google Scholar 

  15. Eberhard, D. & Busslinger, M. The partial homeodomain of the transcription factor Pax-5 (BSAP) is an interaction motif for the retinoblastoma and TATA-binding proteins. Cancer Res. 59, 1716S–1724S (1999).

    CAS  PubMed  Google Scholar 

  16. Yuan, S. S., Yeh, Y. T. & Lee, E. Y. Pax-2 interacts with RB and reverses its repression on the promoter of Rig-1, a Robo member. Biochem. Biophys. Res. Commun. 296, 1019–1025 (2002).

    CAS  PubMed  Google Scholar 

  17. Miccadei, S., Provenzano, C., Mojzisek, M., Giorgio Natali, P. & Civitareale, D. Retinoblastoma protein acts as Pax 8 transcriptional coactivator. Oncogene 24, 6993–7001 (2005).

    CAS  PubMed  Google Scholar 

  18. Relaix, F., Rocancourt, D., Mansouri, A. & Buckingham, M. Divergent functions of murine Pax3 and Pax7 in limb muscle development. Genes Dev. 18, 1088–1105 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tremblay, P., Kessel, M. & Gruss, P. A transgenic neuroanatomical marker identifies cranial neural crest deficiencies associated with the Pax3 mutant Splotch. Dev. Biol. 171, 317–329 (1995).

    CAS  PubMed  Google Scholar 

  20. Tremblay, P. et al. A crucial role for Pax3 in the development of the hypaxial musculature and the long-range migration of muscle precursors. Dev. Biol. 203, 49–61 (1998).

    CAS  PubMed  Google Scholar 

  21. Conway, S. J., Henderson, D. J., Kirby, M. L., Anderson, R. H. & Copp, A. J. Development of a lethal congenital heart defect in the splotch (Pax3) mutant mouse. Cardiovasc. Res. 36, 163–173 (1997).

    CAS  PubMed  Google Scholar 

  22. Goulding, M., Lumsden, A. & Paquette, A. J. Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 120, 957–971 (1994).

    CAS  PubMed  Google Scholar 

  23. Buckiova, D. & Syka, J. Development of the inner ear in Splotch mutant mice. Neuroreport 15, 2001–2005 (2004).

    PubMed  Google Scholar 

  24. Tassabehji, M. et al. PAX3 gene structure and mutations: close analogies between Waardenburg syndrome and the Splotch mouse. Hum. Mol. Genet. 3, 1069–1074 (1994).

    CAS  PubMed  Google Scholar 

  25. Borycki, A. G., Li, J., Jin, F., Emerson, C. P. & Epstein, J. A. Pax3 functions in cell survival and in pax7 regulation. Development 126, 1665–1674 (1999).

    CAS  PubMed  Google Scholar 

  26. Mansouri, A., Stoykova, A., Torres, M. & Gruss, P. Dysgenesis of cephalic neural crest derivatives in Pax7−/− mutant mice. Development 122, 831–838 (1996).

    CAS  PubMed  Google Scholar 

  27. Oustanina, S., Hause, G. & Braun, T. Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J. 23, 3430–3439 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Olguin, H. C. & Olwin, B. B. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev. Biol. 275, 375–388 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lang, D. et al. Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433, 884–887 (2005). This paper first introduces the concept of Pan genes.

    CAS  PubMed  Google Scholar 

  30. Tiffin, N., Williams, R. D., Shipley, J. & Pritchard-Jones, K. PAX7 expression in embryonal rhabdomyosarcoma suggests an origin in muscle satellite cells. Br. J. Cancer 89, 327–332 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Barr, F. G. et al. Predominant expression of alternative PAX3 and PAX7 forms in myogenic and neural tumor cell lines. Cancer Res. 59, 5443–5448 (1999).

    CAS  PubMed  Google Scholar 

  32. Frascella, E., Toffolatti, L. & Rosolen, A. Normal and rearranged PAX3 expression in human rhabdomyosarcoma. Cancer Genet. Cytogenet. 102, 104–109 (1998).

    CAS  PubMed  Google Scholar 

  33. Schulte, T. W., Toretsky, J. A., Ress, E., Helman, L. & Neckers, L. M. Expression of PAX3 in Ewing's sarcoma family of tumors. Biochem. Mol. Med. 60, 121–126 (1997).

    CAS  PubMed  Google Scholar 

  34. Harris, R. G., White, E., Phillips, E. S. & Lillycrop, K. A. The expression of the developmentally regulated proto-oncogene Pax-3 is modulated by N-Myc. J. Biol. Chem. 277, 34815–34825 (2002).

    CAS  PubMed  Google Scholar 

  35. Racz, A. et al. Gene amplification at chromosome 1pter-p33 including the genes PAX7 and ENO1 in squamous cell lung carcinoma. Int. J. Oncol. 17, 67–73 (2000).

    CAS  PubMed  Google Scholar 

  36. Sorensen, P. H. et al. PAX3FKHR and PAX7FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. J. Clin. Oncol. 20, 2672–2679 (2002).

    CAS  PubMed  Google Scholar 

  37. Helman, L. J. & Meltzer, P. Mechanisms of sarcoma development. Nature Rev. Cancer 3, 685–694 (2003).

    CAS  Google Scholar 

  38. Xia, S. J. & Barr, F. G. Analysis of the transforming and growth suppressive activities of the PAX3–FKHR oncoprotein. Oncogene 23, 6864–6871 (2004).

    CAS  PubMed  Google Scholar 

  39. Matsuzaki, Y. et al. Systematic identification of human melanoma antigens using serial analysis of gene expression (SAGE). J. Immunother. 28, 10–19 (2005).

    CAS  PubMed  Google Scholar 

  40. Takeuchi, H. et al. Prognostic significance of molecular upstaging of paraffin-embedded sentinel lymph nodes in melanoma patients. J. Clin. Oncol. 22, 2671–2680 (2004). This paper shows that PAX3 expression is a prognostic marker predicting poor outcome in patients with melanoma.

    CAS  PubMed  Google Scholar 

  41. Margue, C. M., Bernasconi, M., Barr, F. G. & Schafer, B. W. Transcriptional modulation of the anti-apoptotic protein BCL-XL by the paired box transcription factors PAX3 and PAX3–FKHR. Oncogene 19, 2921–2929 (2000).

    CAS  PubMed  Google Scholar 

  42. Wada, H., Holland, P. W., Sato, S., Yamamoto, H. & Satoh, N. Neural tube is partially dorsalized by overexpression of HrPax-37: the ascidian homologue of Pax-3 and Pax-7. Dev. Biol. 187, 240–252 (1997).

    CAS  PubMed  Google Scholar 

  43. Tremblay, P., Pituello, F. & Gruss, P. Inhibition of floor plate differentiation by Pax3: evidence from ectopic expression in transgenic mice. Development 122, 2555–2567 (1996). This paper presents the first evidence that ectopic Pax3 expression promotes maintenance of a progenitor cell state.

    CAS  PubMed  Google Scholar 

  44. Relaix, F. et al. The transcriptional activator PAX3–FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo. Genes Dev. 17, 2950–2965 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cramer, A. et al. Activation of the c-Met receptor complex in fibroblasts drives invasive cell behavior by signaling through transcription factor STAT3. J. Cell Biochem. 95, 805–816 (2005).

    CAS  PubMed  Google Scholar 

  46. Porteous, S. et al. Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu)+/− mutant mice. Hum. Mol. Genet. 9, 1–11 (2000).

    CAS  PubMed  Google Scholar 

  47. Torban, E., Eccles, M. R., Favor, J. & Goodyer, P. R. PAX2 suppresses apoptosis in renal collecting duct cells. Am. J. Pathol. 157, 833–842 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Clark, P., Dziarmaga, A., Eccles, M. & Goodyer, P. Rescue of defective branching nephrogenesis in renal-coloboma syndrome by the caspase inhibitor, Z-VAD-fmk. J. Am. Soc. Nephrol. 15, 299–305 (2004).

    CAS  PubMed  Google Scholar 

  49. Burton, Q., Cole, L. K., Mulheisen, M., Chang, W. & Wu, D. K. The role of Pax2 in mouse inner ear development. Dev. Biol. 272, 161–175 (2004).

    CAS  PubMed  Google Scholar 

  50. Silberstein, G. B., Dressler, G. R. & Van Horn, K. Expression of the PAX2 oncogene in human breast cancer and its role in progesterone-dependent mammary growth. Oncogene 21, 1009–1016 (2002). This paper is the first to identify a possible role for PAX2 in mammary stem-cell survival and highlights potential recapitulation of developmental function in breast cancer.

    CAS  PubMed  Google Scholar 

  51. Mansouri, A., Chowdhury, K. & Gruss, P. Follicular cells of the thyroid gland require Pax8 gene function. Nature Genet. 19, 87–90 (1998).

    CAS  PubMed  Google Scholar 

  52. Eccles, M. R. & Schimmenti, L. A. Renal-coloboma syndrome: a multi-system developmental disorder caused by PAX2 mutations. Clin. Genet. 56, 1–9 (1999).

    CAS  PubMed  Google Scholar 

  53. Rothenpieler, U. W. & Dressler, G. R. Pax-2 is required for mesenchyme-to-epithelium conversion during kidney development. Development 119, 711–720 (1993).

    CAS  PubMed  Google Scholar 

  54. Torres, M., Gomez-Pardo, E., Dressler, G. R. & Gruss, P. Pax-2 controls multiple steps of urogenital development. Development 121, 4057–4065 (1995).

    CAS  PubMed  Google Scholar 

  55. Davies, J. A. et al. Development of an siRNA-based method for repressing specific genes in renal organ culture and its use to show that the Wt1 tumour suppressor is required for nephron differentiation. Hum. Mol. Genet. 13, 235–246 (2004).

    CAS  PubMed  Google Scholar 

  56. Bouchard, M., Souabni, A., Mandler, M., Neubuser, A. & Busslinger, M. Nephric lineage specification by Pax2 and Pax8. Genes Dev. 16, 2958–2970 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, H., Liu, H., Corrales, C. E., Mutai, H. & Heller, S. Correlation of Pax-2 expression with cell proliferation in the developing chicken inner ear. J. Neurobiol. 60, 61–70 (2004).

    CAS  PubMed  Google Scholar 

  58. Eccles, M. R. et al. Expression of the PAX2 gene in human fetal kidney and Wilms' tumor. Cell Growth Differ. 3, 279–289 (1992).

    CAS  PubMed  Google Scholar 

  59. Dressler, G. R. et al. Deregulation of Pax-2 expression in transgenic mice generates severe kidney abnormalities. Nature 362, 65–67 (1993).

    CAS  PubMed  Google Scholar 

  60. Dziarmaga, A. et al. Ureteric bud apoptosis and renal hypoplasia in transgenic PAX2Bax fetal mice mimics the renal-coloboma syndrome. J. Am. Soc. Nephrol. 14, 2767–2774 (2003).

    CAS  PubMed  Google Scholar 

  61. Oliver, J. A., Maarouf, O., Cheema, F. H., Martens, T. P. & Al-Awqati, Q. The renal papilla is a niche for adult kidney stem cells. J. Clin. Invest. 114, 795–804 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Stuart, E. T., Haffner, R., Oren, M. & Gruss, P. Loss of p53 function through PAX-mediated transcriptional repression. EMBO J. 14, 5638–5645 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hewitt, S. M. et al. Transcriptional activation of the bcl-2 apoptosis suppressor gene by the paired box transcription factor PAX8. Anticancer Res. 17, 3211–3215 (1997).

    CAS  PubMed  Google Scholar 

  64. Macchia, P. E. et al. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nature Genet. 19, 83–86 (1998).

    CAS  PubMed  Google Scholar 

  65. Igarashi, T. et al. Aberrant expression of Pax-2 mRNA in renal cell carcinoma tissue and parenchyma of the affected kidney. Int. J. Urol. 8, 60–64 (2001).

    CAS  PubMed  Google Scholar 

  66. Daniel, L. et al. Pax-2 expression in adult renal tumors. Hum. Pathol. 32, 282–237 (2001).

    CAS  PubMed  Google Scholar 

  67. Schaner, M. E. et al. Gene expression patterns in ovarian carcinomas. Mol. Biol. Cell 14, 4376–4386 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Khoubehi, B. et al. Expression of the developmental and oncogenic PAX2 gene in human prostate cancer. J. Urol. 165, 2115–2120 (2001).

    CAS  PubMed  Google Scholar 

  69. Dressler, G. R. & Douglass, E. C. Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc. Natl Acad. Sci. USA 89, 1179–1183 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Davies, J. A., Perera, A. D. & Walker, C. L. Mechanisms of epithelial development and neoplasia in the metanephric kidney. Int. J. Dev. Biol. 43, 473–478 (1999).

    CAS  PubMed  Google Scholar 

  71. Lui, W. O. et al. Expression profiling reveals a distinct transcription signature in follicular thyroid carcinomas with a PAX8PPARγ fusion oncogene. Oncogene 24, 1467–1476 (2005).

    CAS  PubMed  Google Scholar 

  72. Scouten, W. T. et al. Cytoplasmic localization of the paired box gene, Pax-8, is found in pediatric thyroid cancer and may be associated with a greater risk of recurrence. Thyroid 14, 1037–1046 (2004).

    CAS  PubMed  Google Scholar 

  73. Ferretti, E. et al. Expression, regulation, and function of PAX8 in the human placenta and placental cancer cell lines. Endocrinology 146, 4009–4015 (2005).

    CAS  PubMed  Google Scholar 

  74. Lacroix, L. et al. PAX8 and peroxisome proliferator-activated receptor γ 1 gene expression status in benign and malignant thyroid tissues. Eur. J. Endocrinol. 151, 367–374 (2004).

    CAS  PubMed  Google Scholar 

  75. Marques, A. R. et al. Expression of PAX8PPARγ1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 87, 3947–3952 (2002).

    CAS  PubMed  Google Scholar 

  76. Marques, A. R. et al. Underexpression of peroxisome proliferator-activated receptor (PPAR)γ in PAX8–PPARγ-negative thyroid tumours. Br. J. Cancer 91, 732–738 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dwight, T. et al. Involvement of the PAX8–peroxisome proliferator-activated receptor γ rearrangement in follicular thyroid tumors. J. Clin. Endocrinol. Metab. 88, 4440–4445 (2003).

    CAS  PubMed  Google Scholar 

  78. Nikiforova, M. N., Biddinger, P. W., Caudill, C. M., Kroll, T. G. & Nikiforov, Y. E. PAX8PPARγ rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am. J. Surg. Pathol. 26, 1016–1023 (2002).

    PubMed  Google Scholar 

  79. Nikiforova, M. N. et al. RAS point mutations and PAX8PPAR γ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab. 88, 2318–2326 (2003).

    CAS  PubMed  Google Scholar 

  80. Cheung, L. et al. Detection of the PAX8PPARγ fusion oncogene in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 88, 354–357 (2003).

    CAS  PubMed  Google Scholar 

  81. Kroll, T. G. et al. PAX8PPARγ1 fusion oncogene in human thyroid carcinoma. Science 289, 1357–1360 (2000).

    CAS  PubMed  Google Scholar 

  82. Gregory Powell, J. et al. The PAX8–PPARγ fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARγ inhibition. Oncogene 23, 3634–3641 (2004).

    CAS  PubMed  Google Scholar 

  83. McIver, B., Grebe, S. K. & Eberhardt, N. L. The PAX8PPARγ fusion oncogene as a potential therapeutic target in follicular thyroid carcinoma. Curr. Drug Targets Immune Endocr. Metabol. Disord 4, 221–234 (2004).

    CAS  PubMed  Google Scholar 

  84. Busslinger, M. Transcriptional control of early B cell development. Annu. Rev. Immunol. 22, 55–79 (2004).

    CAS  PubMed  Google Scholar 

  85. Urbanek, P., Wang, Z. Q., Fetka, I., Wagner, E. F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).

    CAS  PubMed  Google Scholar 

  86. Horowitz, M. C. et al. Pax5-deficient mice exhibit early onset osteopenia with increased osteoclast progenitors. J. Immunol. 173, 6583–6591 (2004).

    CAS  PubMed  Google Scholar 

  87. Hirokawa, S., Sato, H., Kato, I. & Kudo, A. EBF-regulating Pax5 transcription is enhanced by STAT5 in the early stage of B cells. Eur. J. Immunol. 33, 1824–1829 (2003).

    CAS  PubMed  Google Scholar 

  88. Bromberg, J. Stat proteins and oncogenesis. J. Clin. Invest. 109, 1139–1142 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu, H. & Jove, R. The STATs of cancer — new molecular targets come of age. Nature Rev. Cancer. 4, 97–105 (2004).

    CAS  Google Scholar 

  90. Zhang, X., Lin, Z. & Kim, I. Pax5 expression in non-Hodgkin's lymphomas and acute leukemias. J. Korean Med. Sci. 18, 804–808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Krenacs, L. et al. Transcription factor B-cell-specific activator protein (BSAP) is differentially expressed in B cells and in subsets of B-cell lymphomas. Blood 92, 1308–1316 (1998).

    CAS  PubMed  Google Scholar 

  92. Poppe, B. et al. PAX5IGH rearrangement is a recurrent finding in a subset of aggressive B-NHL with complex chromosomal rearrangements. Genes Chromosomes Cancer 44, 218–223 (2005).

    CAS  PubMed  Google Scholar 

  93. Ohno, H., Ueda, C. & Akasaka, T. The t(9;14)(p13;q32) translocation in B-cell non-Hodgkin's lymphoma. Leuk. Lymphoma 36, 435–445 (2000).

    CAS  PubMed  Google Scholar 

  94. Stuart, E. T., Kioussi, C., Aguzzi, A. & Gruss, P. PAX5 expression correlates with increasing malignancy in human astrocytomas. Clin. Cancer Res. 1, 207–214 (1995).

    CAS  PubMed  Google Scholar 

  95. Baumann Kubetzko, F. B. et al. The PAX5 oncogene is expressed in N-type neuroblastoma cells and increases tumorigenicity of a S-type cell line. Carcinogenesis 25, 1839–1846 (2004).

    CAS  PubMed  Google Scholar 

  96. Kozmik, Z., Sure, U., Ruedi, D., Busslinger, M. & Aguzzi, A. Deregulated expression of PAX5 in medulloblastoma. Proc. Natl Acad. Sci. USA 92, 5709–5013 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Maulbecker, C. C. & Gruss, P. The oncogenic potential of Pax genes. EMBO J. 12, 2361–2367 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Miyamoto, T. et al. Expression of dominant negative form of PAX4 in human insulinoma. Biochem. Biophys. Res. Commun. 282, 34–40 (2001).

    CAS  PubMed  Google Scholar 

  99. Chi, N. & Epstein, J. A. Getting your Pax straight: Pax proteins in development and disease. Trends Genet. 18, 41–47 (2002).

    CAS  PubMed  Google Scholar 

  100. Pichaud, F. & Desplan, C. Pax genes and eye organogenesis. Curr. Opin. Genet. Dev. 12, 430–434 (2002).

    CAS  PubMed  Google Scholar 

  101. Simpson, T. I. & Price, D. J. Pax6; a pleiotropic player in development. Bioessays 24, 1041–1051 (2002).

    CAS  PubMed  Google Scholar 

  102. Hill, R. E. et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525 (1991).

    CAS  PubMed  Google Scholar 

  103. Stoykova, A., Fritsch, R., Walther, C. & Gruss, P. Forebrain patterning defects in small eye mutant mice. Development 122, 3453–3465 (1996).

    CAS  PubMed  Google Scholar 

  104. Sander, M. et al. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev. 11, 1662–1673 (1997).

    CAS  PubMed  Google Scholar 

  105. Philips, G. T. et al. Precocious retinal neurons: Pax6 controls timing of differentiation and determination of cell type. Dev. Biol. 279, 308–321 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tian, N. M. & Price, D. J. Why cavefish are blind. Bioessays 27, 235–238 (2005). This paper provides an excellent account of how Pax6 regulates the degeneration of eye primordia to produce blind cavefish.

    CAS  PubMed  Google Scholar 

  107. Ooto, S. et al. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc. Natl Acad. Sci. USA 101, 13654–13659 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. van Heyningen, V. & Williamson, K. A. PAX6 in sensory development. Hum. Mol. Genet. 11, 1161–1167 (2002).

    CAS  PubMed  Google Scholar 

  109. Halder, G., Callaerts, P. & Gehring, W. J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792 (1995).

    CAS  PubMed  Google Scholar 

  110. Altmann, C. R., Chow, R. L., Lang, R. A. & Hemmati-Brivanlou, A. Lens induction by Pax-6 in Xenopus laevis. Dev. Biol. 185, 119–123 (1997).

    CAS  PubMed  Google Scholar 

  111. Jones, P. A. et al. De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc. Natl Acad. Sci. USA 87, 6117–6121 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Liang, G. et al. DNA methylation differences associated with tumor tissues identified by genome scanning analysis. Genomics 53, 260–268 (1998).

    CAS  PubMed  Google Scholar 

  113. Salem, C. E. et al. PAX6 methylation and ectopic expression in human tumor cells. Int. J. Cancer 87, 179–185 (2000).

    CAS  PubMed  Google Scholar 

  114. Nguyen, C. et al. Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells. J. Natl Cancer Inst. 93, 1465–1472 (2001).

    CAS  PubMed  Google Scholar 

  115. Ballestar, E. et al. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J. 22, 6335–6345 (2003). This paper shows that silencing of PAX6 could contribute to the progression of breast cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Rodrigo, I., Hill, R. E., Balling, R., Munsterberg, A. & Imai, K. Pax1 and Pax9 activate Bapx1 to induce chondrogenic differentiation in the sclerotome. Development 130, 473–482 (2003).

    CAS  PubMed  Google Scholar 

  117. Peters, H., Neubuser, A., Kratochwil, K. & Balling, R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 12, 2735–2747 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Klein, M. L., Nieminen, P., Lammi, L., Niebuhr, E. & Kreiborg, S. Novel mutation of the initiation codon of PAX9 causes oligodontia. J. Dent. Res. 84, 43–47 (2005).

    CAS  PubMed  Google Scholar 

  119. Lammi, L. et al. A missense mutation in PAX9 in a family with distinct phenotype of oligodontia. Eur. J. Hum. Genet. 11, 866–871 (2003).

    CAS  PubMed  Google Scholar 

  120. Das, P. et al. Haploinsufficiency of PAX9 is associated with autosomal dominant hypodontia. Hum. Genet. 110, 371–376 (2002).

    CAS  PubMed  Google Scholar 

  121. Stockton, D. W., Das, P., Goldenberg, M., D'Souza, R. N. & Patel, P. I. Mutation of PAX9 is associated with oligodontia. Nature Genet. 24, 18–19 (2000).

    CAS  PubMed  Google Scholar 

  122. Peters, H. et al. Pax1 and Pax9 synergistically regulate vertebral column development. Development 126, 5399–5408 (1999).

    CAS  PubMed  Google Scholar 

  123. Yoo, B. S. et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters the regulation of Pax5 in lipopolysaccharide-activated B cells. Toxicol. Sci. 77, 272–279 (2004).

    CAS  PubMed  Google Scholar 

  124. Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    CAS  PubMed  Google Scholar 

  125. Du, J. et al. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell 6, 565–576 (2004).

    CAS  PubMed  Google Scholar 

  126. Treisman, J., Harris, E. & Desplan, C. The paired box encodes a second DNA-binding domain in the paired homeo domain protein. Genes Dev. 5, 594–604 (1991).

    CAS  PubMed  Google Scholar 

  127. Ward, T. A., Nebel, A., Reeve, A. E. & Eccles, M. R. Alternative messenger RNA forms and open reading frames within an additional conserved region of the human PAX-2 gene. Cell Growth Differ. 5, 1015–1021 (1994).

    CAS  PubMed  Google Scholar 

  128. Rinkenberger, J. L., Wallin, J. J., Johnson, K. W. & Koshland, M. E. An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene. Immunity 5, 377–386 (1996).

    CAS  PubMed  Google Scholar 

  129. Pearton, D. J., Yang, Y. & Dhouailly, D. Transdifferentiation of corneal epithelium into epidermis occurs by means of a multistep process triggered by dermal developmental signals. Proc. Natl Acad. Sci. USA 102, 3714–3719 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Jonker, L., Kist, R., Aw, A., Wappler, I. & Peters, H. Pax9 is required for filiform papilla development and suppresses skin-specific differentiation of the mammalian tongue epithelium. Mech. Dev. 121, 1313–1322 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge research fellowship support from the Health Research Council of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Eccles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

supplementary information

Supplementary tables S1 and S2 (PDF 368 kb)

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

Ewing sarcoma

Kaposi sarcoma

kidney cancer

leukaemias

melanomas

neuroblastomas

non-Hodgkin lymphoma

ovarian cancer

prostate cancer

rhabdomyosarcoma

Wilms tumour

OMIM

papillorenal syndrome

FURTHER INFORMATION

A listing of cancer gene databases

Atlas of Genetics and Cytogenetics in Oncology and Haematology

Cancer Genome Anatomy Project (CGAP) gene finder

Human PAX2 Allelic Variant Database

Pax factors — regulatory targets and integration in the TRANSFAC database

Pax in molecular development, University of South Wales Embryology

PAX3 on the Cancer Genetics Web

Glossary

Gleason score

Areas within prostate cancers are graded from one to five to indicate the level of differentiation, five reflecting poorest differentiation. To calculate the Gleason score, the grades given to the most and second most common patterns observed in a tumour are summed, giving a number between two and ten, ten indicating poorest differentiation.

Aniridia

Congenital absence of the iris.

Foveal dysplasia

Abnormal development of the fovea, a pit in the retina.

Sclerotome

The part of the embryogenic segmented mesoderm from which all skeletal tissue arises.

Ultimobranchial body

A diverticulum derived from the third and fourth pharangeal pouches in the developing embryo. The ultimobranchial body fuses with the thyroid gland and gives rise to parafollicular cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robson, E., He, SJ. & Eccles, M. A PANorama of PAX genes in cancer and development. Nat Rev Cancer 6, 52–62 (2006). https://doi.org/10.1038/nrc1778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing