Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenetic mechanisms in thyroid follicular-cell neoplasia

Key Points

  • Thyroid tumours are the most common malignancy of endocrine organs, and incidence rates have steadily increased over recent decades.

  • Most carcinomas that are derived from follicular epithelial cells are indolent tumours that can be effectively managed. However, a subset of these tumours can behave aggressively, and there is currently no effective form of treatment.

  • Radiation exposure, iodine intake, lymphocytic thyroiditis, hormonal factors and family history all alter the risk of thyroid carcinoma.

  • Alterations in key signalling effectors seem to be the hallmark of distinct forms of thyroid neoplasia.

  • Mutations or rearrangements that involve mitogen-activated protein kinase (MAPK)-pathway effectors seem to be required for transformation.

  • Signalling through growth factors and their receptors is considered essential for cancer progression, and some of these growth factors have been identified as modifiers of the behaviour of transformed thyroid cells.

  • Cell-cycle regulators and adhesion molecules are altered in thyroid carcinomas, typically through epigenetic mechanisms that indicate progression to poorly differentiated or undifferentiated forms.

  • Several molecules that are involved in the pathogenesis of thyroid cancers are emerging as diagnostic and/or prognostic tools for patient management.

Abstract

Thyroid cancer is one of the few malignancies that are increasing in incidence. Recent advances have improved our understanding of its pathogenesis; these include the identification of genetic alterations that activate a common effector pathway involving the RET–Ras–BRAF signalling cascade, and other unique chromosomal rearrangements. Some of these have been associated with radiation exposure as a pathogenetic mechanism. Defects in transcriptional and post-transcriptional regulation of adhesion molecules and cell-cycle control elements seem to affect tumour progression. This information can provide powerful ancillary diagnostic tools and can also be used to identify new therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The thyroid gland.
Figure 2: Model of multi-step carcinogenesis of thyroid neoplasms.
Figure 3: Cell signalling pathways in follicular cells.
Figure 4: Cell–cell and cell–matrix interactions in thyroid cancer cells.
Figure 5: Cell-cycle regulation in follicular cells.

Similar content being viewed by others

References

  1. Hundahl, S. A., Fleming, I. D., Fremgen, A. M. & Menck, H. R. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U. S., 1985–1995. Cancer 83, 2638–2648 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. American Cancer Society. Facts and Figures 2005 (American Cancer Society, Atlanta, 2005).

  3. Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).

    Article  PubMed  Google Scholar 

  4. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Endocrine Organs (eds DeLellis, R. A., Lloyd R. V., Heitz, P. U. & Eng, C.) (IARC Press, Lyon, 2004).

  5. Liu, S., Semenciw, R., Ugnat, A. M. & Mao, Y. Increasing thyroid cancer incidence in Canada, 1970–1996: time trends and age–period–cohort effects. Br. J. Cancer 85, 1335–1339 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marx, S. J. Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nature Rev. Cancer 5, 367–375 (2005).

    Article  CAS  Google Scholar 

  7. LiVolsi, V. A. & Asa, S. L. The demise of follicular carcinoma of the thyroid gland. Thyroid 4, 233–236 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Kebebew, E., Greenspan, F. S., Clark, O. H., Woeber, K. A. & McMillan, A. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer 103, 1330–1335 (2005).

    Article  PubMed  Google Scholar 

  9. Carcangiu, M. L., Zampi, G. & Rosai, J. Poorly differentiated ('insular') thyroid carcinoma. A reinterpretation of Langhans' 'wuchernde Struma'. Am. J. Surg. Pathol. 8, 655–668 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Rodriguez, J. M. et al. Insular carcinoma: an infrequent subtype of thyroid cancer. J. Am. Coll. Surg. 187, 503–508 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. van der Laan B. F., Freeman J. L., Tsang R. W. & Asa S. L. The association of well-differentiated thyroid carcinoma with insular or anaplastic thyroid carcinoma: evidence for dedifferentiation in tumor progression. Endocr. Pathol. 4, 215–221 (1993).

    Article  PubMed  Google Scholar 

  12. Hunt, J. L. et al. Molecular evidence of anaplastic transformation in coexisting well-differentiated and anaplastic carcinomas of the thyroid. Am. J. Surg. Pathol. 27, 1559–1564 (2003).

    Article  PubMed  Google Scholar 

  13. Kazakov, V. S., Demidchik, E. P. & Astakhova, L. N. Thyroid cancer after Chernobyl. Nature 359, 21 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Williams, D. Cancer after nuclear fallout: lessons from the Chernobyl accident. Nature Rev. Cancer 2, 543–549 (2002).

    Article  CAS  Google Scholar 

  15. Ron, E. et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat. Res. 141, 259–277 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Ciampi, R. et al. Oncogenic AKAP9–BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J. Clin. Invest. 115, 94–101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harach, H. R., Escalante, D. A. & Day, E. S. Thyroid cancer and thyroiditis in Salta, Argentina: a 40-yr study in relation to iodine prophylaxis. Endocr. Pathol. 13, 175–181 (2002).

    Article  PubMed  Google Scholar 

  18. Yamashita, H. et al. Effects of dietary iodine on chemical induction of thyroid carcinoma. Acta. Pathol. Jpn 40, 705–712 (1990).

    CAS  PubMed  Google Scholar 

  19. Gasbarri, A. et al. Detection and molecular characterisation of thyroid cancer precursor lesions in a specific subset of Hashimoto's thyroiditis. Br. J. Cancer 91, 1096–1104 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prasad, M. L., Huang, Y., Pellegata, N. S., de la Chapelle, A. & Kloos, R. T. Hashimoto's thyroiditis with papillary thyroid carcinoma (PTC)-like nuclear alterations express molecular markers of PTC. Histopathology 45, 39–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Kawabata, W. et al. Estrogen receptors (α and β) and 17β-hydroxysteroid dehydrogenase type 1 and 2 in thyroid disorders: possible in situ estrogen synthesis and actions. Mod. Pathol. 16, 437–444 (2003).

    Article  PubMed  Google Scholar 

  22. Lee, M. L. et al. Induction of thyroid papillary carcinoma cell proliferation by estrogen is associated with an altered expression of Bcl-xL. Cancer J. 11, 113–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Haselkorn, T., Stewart, S. L. & Horn-Ross, P. L. Why are thyroid cancer rates so high in southeast asian women living in the United States? The bay area thyroid cancer study. Cancer Epidemiol. Biomarkers Prev. 12, 144–150 (2003).

    PubMed  Google Scholar 

  24. Hemminki, K., Eng, C. & Chen, B. Familial risks for nonmedullary thyroid cancer. J. Clin. Endocrinol. Metab. 90, 5747–5753 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Lupoli, G. et al. Familial papillary thyroid microcarcinoma: a new clinical entity. Lancet 353, 637–639 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Lindor, N. M. & Greene, M. H. The concise handbook of family cancer syndromes. Mayo Familial Cancer Program. J. Natl Cancer Inst. 90, 1039–1071 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Eng, C. Familial papillary thyroid cancer — many syndromes, too many genes? J. Clin. Endocrinol. Metab. 85, 1755–1757 (2000).

    CAS  PubMed  Google Scholar 

  28. Johannessen, J. V., Sobrinho-Simoes, M., Lindmo, T. & Tangen, K. O. The diagnostic value of flow cytometric DNA measurements in selected disorders of the human thyroid. Am. J. Clin. Pathol. 77, 20–25 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. Belge, G. et al. Cytogenetic investigations of 340 thyroid hyperplasias and adenomas revealing correlations between cytogenetic findings and histology. Cancer Genet. Cytogenet. 101, 42–48 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Castro, P. et al. Adenomas and follicular carcinomas of the thyroid display two major patterns of chromosomal changes. J. Pathol. 206, 305–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Sobrinho-Simoes, M. et al. Molecular pathology of well-differentiated thyroid carcinomas. Virchows Arch. 447, 787–793 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Soares, P., dos Santos, N. R., Seruca, R., Lothe, R. A. & Sobrinho-Simoes, M. Benign and malignant thyroid lesions show instability at microsatellite loci. Eur. J. Cancer 33, 293–296 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Lazzereschi, D. et al. Microsatellite instability in thyroid tumours and tumour-like lesions. Br. J. Cancer 79, 340–345 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saavedra, H. I. et al. The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene 19, 3948–3954 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Mitsutake, N. et al. Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res. 65, 2465–2473 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Knauf, J. A. et al. Oncogenic RAS induces accelerated transition through G2/M and promotes defects in the G2 DNA damage and mitotic spindle checkpoints. J. Biol. Chem. 281, 3800–3809 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Li, J. J. et al. Estrogen mediates Aurora-A overexpression, centrosome amplification, chromosomal instability, and breast cancer in female ACI rats. Proc. Natl Acad. Sci. USA 101, 18123–18128 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pati, D. et al. Hormone-induced chromosomal instability in p53-null mammary epithelium. Cancer Res. 64, 5608–5616 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Morgan, W. F. & Sowa, M. B. Effects of ionizing radiation in nonirradiated cells. Proc. Natl Acad. Sci. USA 102, 14127–14128 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sieber, O. M., Heinimann, K. & Tomlinson, I. P. Genomic instability — the engine of tumorigenesis? Nature Rev. Cancer 3, 701–708 (2003).

    Article  CAS  Google Scholar 

  41. Kimura, T. et al. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr. Rev. 22, 631–656 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Krohn, K. et al. Molecular pathogenesis of euthyroid and toxic multinodular goiter. Endocr. Rev. 26, 504–524 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Matsuo, K., Friedman, E., Gejman, P. V. & Fagin, J. A. The thyrotropin receptor (TSH-R) is not an oncogene for thyroid tumors: structural studies of the TSH-R and the α-subunit of Gs in human thyroid neoplasms. J. Clin. Endocrinol. Metab. 76, 1446–1451 (1993).

    CAS  PubMed  Google Scholar 

  44. Spambalg, D. et al. Structural studies of the thyrotropin receptor and Gsα in human thyroid cancers: low prevalence of mutations predicts infrequent involvement in malignant transformation. J. Clin. Endocrinol. Metab. 81, 3898–3901 (1996).

    CAS  PubMed  Google Scholar 

  45. Goretzki, P. E. et al. Mutational activation of RAS and GSP oncogenes in differentiated thyroid cancer and their biological implications. World J. Surg. 16, 576–581 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Collins, M. T. et al. Thyroid carcinoma in the McCune–Albright syndrome: contributory role of activating Gsα mutations. J. Clin. Endocrinol. Metab. 88, 4413–4417 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Xing, M. BRAF mutation in thyroid cancer. Endocr. Relat. Cancer 12, 245–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi, M. et al. Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3, 571–578 (1988).

    CAS  PubMed  Google Scholar 

  49. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Airaksinen, M. S. & Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nature Rev. Neurosci. 3, 383–394 (2002).

    Article  CAS  Google Scholar 

  51. Tallini, G. & Asa, S. L. RET oncogene activation in papillary thyroid carcinoma. Adv. Anat. Pathol. 8, 345–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Tallini, G. et al. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin. Cancer Res. 4, 287–294 (1998).

    CAS  PubMed  Google Scholar 

  53. Lam, A. K., Montone, K. T., Nolan, K. A. & Livolsi, V. A. Ret oncogene activation in papillary thyroid carcinoma: prevalence and implication on the histological parameters. Hum. Pathol. 29, 565–568 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Sugg, S. L. et al. Oncogene profile of papillary thyroid carcinoma. Surgery 125, 46–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Musholt, T. J. et al. Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. Surgery 128, 984–993 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Nakazawa, T. et al. RET gene rearrangements (RET/PTC1 and RET/PTC3) in papillary thyroid carcinomas from an iodine-rich country (Japan). Cancer 104, 943–951 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Sugg, S. L., Ezzat, S., Rosen, I. B., Freeman, J. L. & Asa, S. L. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J. Clin. Endocrinol. Metab. 83, 4116–4122 (1998). One of the original reports that took advantage of distinct gene rearrangements in assigning clonal origin of multiple thyroid nodules in the same gland.

    CAS  PubMed  Google Scholar 

  58. Nikiforov, Y. E., Rowland, J. M., Bove, K. E., Monforte-Munoz, H. & Fagin, J. A. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 57, 1690–1694 (1997). One of the original reports that documents the distinct pattern of gene rearrangements that are found in radiation-associated thyroid carcinomas.

    CAS  PubMed  Google Scholar 

  59. Smida, J. et al. Distinct frequency of ret rearrangements in papillary thyroid carcinomas of children and adults from Belarus. Int. J. Cancer 80, 32–38 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000). An elegant study that provides a structural basis for the predisposition of thyroid cells to radiation-induced chromosomal paracentric inversions.

    Article  CAS  PubMed  Google Scholar 

  61. Jhiang, S. M. et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 137, 375–378 (1996). One of the earliest and more convincing lines of evidence for the role of RET /PTC rearrangement in thyroid cell transformation.

    Article  CAS  PubMed  Google Scholar 

  62. Powell, D. J. Jr et al. The RET/PTC3 oncogene: metastatic solid-type papillary carcinomas in murine thyroids. Cancer Res. 58, 5523–5528 (1998).

    CAS  PubMed  Google Scholar 

  63. La Perle, K. M., Jhiang, S. M. & Capen, C. C. Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas. Am. J. Pathol. 157, 671–677 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Corvi, R. et al. Frequent RET rearrangements in thyroid papillary microcarcinoma detected by interphase fluorescence in situ hybridization. Lab. Invest. 81, 1639–1645 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Unger, K. et al. Heterogeneity in the distribution of RET/PTC rearrangements within individual post-Chernobyl papillary thyroid carcinomas. J. Clin. Endocrinol. Metab. 89, 4272–4279 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Fusco, A. et al. Assessment of RET/PTC oncogene activation and clonality in thyroid nodules with incomplete morphological evidence of papillary carcinoma: a search for the early precursors of papillary cancer. Am. J. Pathol. 160, 2157–2167 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Santoro, M. et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J. Clin. Invest. 89, 1517–1522 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Santoro, M. et al. RET activation and clinicopathologic features in poorly differentiated thyroid tumors. J. Clin. Endocrinol. Metab. 87, 370–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Quiros, R. M., Ding, H. G., Gattuso, P., Prinz, R. A. & Xu, X. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer 103, 2261–2268 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Wirtschafter, A. et al. Expression of the RET/PTC fusion gene as a marker for papillary carcinoma in Hashimoto's thyroiditis. Laryngoscope 107, 95–100 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Sheils, O. M., O'Eary J. J., Uhlmann, V., Lattich, K. & Sweeney, E. C. ret/PTC-1 activation in Hashimoto Thyroiditis. Int. J. Surg Pathol 8, 185–189 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Nikiforova, M. N., Caudill, C. M., Biddinger, P. & Nikiforov, Y. E. Prevalence of RET/PTC rearrangements in Hashimoto's thyroiditis and papillary thyroid carcinomas. Int. J. Surg. Pathol. 10, 15–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Fink, A., Tomlinson, G., Freeman, J. L., Rosen, I. B. & Asa, S. L. Occult micropapillary carcinoma associated with benign follicular thyroid disease and unrelated thyroid neoplasms. Mod. Pathol. 9, 816–820 (1996).

    CAS  PubMed  Google Scholar 

  74. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Trovisco, V. et al. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients' age but not with tumour aggressiveness. Virchows Arch. 446, 589–595 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Trovisco, V. et al. A new BRAF gene mutation detected in a case of a solid variant of papillary thyroid carcinoma. Hum. Pathol. 36, 694–697 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Namba, H. et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metab. 88, 4393–4397 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Nikiforova, M. N. et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab. 88, 5399–5404 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Soares, P. et al. BRAF mutations typical of papillary thyroid carcinoma are more frequently detected in undifferentiated than in insular and insular-like poorly differentiated carcinomas. Virchows Arch. 444, 572–576 (2004).

    Article  PubMed  Google Scholar 

  80. Salvatore, G. et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 89, 5175–5180 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Knauf, J. A. et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 65, 4238–4245 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Lima, J. et al. BRAF mutations are not a major event in post-Chernobyl childhood thyroid carcinomas. J. Clin. Endocrinol. Metab. 89, 4267–4271 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Nikiforova, M. N. et al. Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Lett. 209, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Rosenbaum, E. et al. Mutational activation of BRAF is not a major event in sporadic childhood papillary thyroid carcinoma. Mod. Pathol. 18, 898–902 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Kaplan, D. R., Martin-Zanca, D. & Parada, L. F. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 350, 158–160 (1991).

    Article  CAS  PubMed  Google Scholar 

  86. Martin-Zanca, D., Hughes, S. H. & Barbacid, M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 319, 743–748 (1986).

    Article  CAS  PubMed  Google Scholar 

  87. Miller, F. D. & Kaplan, D. R. On Trk for retrograde signaling. Neuron 32, 767–770 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Wajjwalku, W. et al. Low frequency of rearrangements of the ret and trk proto-oncogenes in Japanese thyroid papillary carcinomas. Jpn. J. Cancer Res. 83, 671–675 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bongarzone, I. et al. Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 81, 2006–2009 (1996).

    CAS  PubMed  Google Scholar 

  90. Rabes, H. M. et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin. Cancer Res. 6, 1093–1103 (2000).

    CAS  PubMed  Google Scholar 

  91. Beimfohr, C., Klugbauer, S., Demidchik, E. P., Lengfelder, E. & Rabes, H. M. NTRK1 re-arrangement in papillary thyroid carcinomas of children after the Chernobyl reactor accident. Int. J. Cancer 80, 842–847 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  93. Lemoine, N. R. et al. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4, 159–164 (1989).

    CAS  PubMed  Google Scholar 

  94. Namba, H., Rubin, S. A. & Fagin, J. A. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol. Endocrinol. 4, 1474–1479 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. Manenti, G., Pilotti, S., Re, F. C., Della Porta, G. & Pierotti, M. A. Selective activation of ras oncogenes in follicular and undifferentiated thyroid carcinomas. Eur. J. Cancer 30A, 987–993 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Ezzat, S. et al. Prevalence of activating ras mutations in morphologically characterized thyroid nodules. Thyroid 6, 409–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Esapa, C. T., Johnson, S. J., Kendall-Taylor, P., Lennard, T. W. & Harris, P. E. Prevalence of Ras mutations in thyroid neoplasia. Clin. Endocrinol (Oxford) 50, 529–535 (1999).

    Article  CAS  Google Scholar 

  98. Basolo, F. et al. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid 10, 19–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Nikiforova, M. N. et al. RAS point mutations and PAX8PPARγ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab. 88, 2318–2326 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Shi, Y. F. et al. High rates of ras codon 61 mutation in thyroid tumors in an iodide-deficient area. Cancer Res. 51, 2690–2693 (1991).

    CAS  PubMed  Google Scholar 

  101. Zhu, Z., Gandhi, M., Nikiforova, M. N., Fischer, A. H. & Nikiforov, Y. E. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am. J. Clin. Pathol. 120, 71–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Suchy, B., Waldmann, V., Klugbauer, S. & Rabes, H. M. Absence of RAS and p53 mutations in thyroid carcinomas of children after Chernobyl in contrast to adult thyroid tumours. Br. J. Cancer 77, 952–955 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hirokawa, M. et al. Observer variation of encapsulated follicular lesions of the thyroid gland. Am. J. Surg. Pathol. 26, 1508–1514 (2002).

    Article  PubMed  Google Scholar 

  104. Lloyd, R. V. et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am. J. Surg. Pathol. 28, 1336–1340 (2004).

    Article  PubMed  Google Scholar 

  105. Garcia-Rostan, G. et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J. Clin. Oncol. 21, 3226–3235 (2003). A thorough and meticulous report that demonstrates the relative infrequency of Ras mutations in activating MAPK signalling in well-differentiated thyroid carcinomas, along with the higher incidence of these mutations in poorly differentiated carcinomas.

    Article  CAS  PubMed  Google Scholar 

  106. Desvergne, B. & Wahli, W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649–688 (1999).

    CAS  PubMed  Google Scholar 

  107. Kroll, T. G. et al. PAX8PPARγ1 fusion oncogene in human thyroid carcinoma. Science 289, 1357–1360 (2000). An original description of the PPARγ rearrangement in follicular-type thyroid carcinomas.

    Article  CAS  PubMed  Google Scholar 

  108. Gregory Powell, J. et al. The PAX8–PPARγ fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARγ inhibition. Oncogene 23, 3634–3641 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Nikiforova, M. N., Biddinger, P. W., Caudill, C. M., Kroll, T. G. & Nikiforov, Y. E. PAX8PPARγ rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am. J. Surg. Pathol. 26, 1016–1023 (2002).

    Article  PubMed  Google Scholar 

  110. Marques, A. R. et al. Expression of PAX8PPARγ1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 87, 3947–3952 (2002).

    CAS  PubMed  Google Scholar 

  111. Cheung, L. et al. Detection of the PAX8PPARγ fusion oncogene in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 88, 354–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Dwight, T. et al. Involvement of the PAX8–peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J. Clin. Endocrinol. Metab. 88, 4440–4445 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Castro, P., Roque, L., Magalhaes, J. & Sobrinho-Simoes, M. A subset of the follicular variant of papillary thyroid carcinoma harbors the PAX8PPARγ translocation. Int J. Surg Pathol 13, 235–238 (2005).

    Article  PubMed  Google Scholar 

  114. Thompson, N. W., Dunn, E. L., Batsakis, J. G. & Nishiyama, R. H. Hurthle cell lesions of the thyroid gland. Surg. Gynecol. Obstet. 139, 555–560 (1974).

    CAS  PubMed  Google Scholar 

  115. Katoh, R., Harach, H. R. & Williams, E. D. Solitary, multiple, and familial oxyphil tumours of the thyroid gland. J. Pathol. 186, 292–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Asa, S. L. My approach to oncocytic tumours of the thyroid. J. Clin. Pathol. 57, 225–232 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cheung, C. C., Ezzat, S., Ramyar, L., Freeman, J. L. & Asa, S. L. Molecular basis of Hurthle cell papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 85, 878–882 (2000). The first paper to critically examine the molecular basis of the classification of oncocytic thyroid carcinomas.

    CAS  PubMed  Google Scholar 

  118. Chiappetta, G. et al. The RET/PTC oncogene is frequently activated in oncocytic thyroid tumors (Hurthle cell adenomas and carcinomas), but not in oncocytic hyperplastic lesions. J. Clin. Endocrinol. Metab. 87, 364–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Maximo, V. & Sobrinho-Simoes, M. Mitochondrial DNA 'common' deletion in Hurthle cell lesions of the thyroid. J. Pathol. 192, 561–562 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Yeh, J. J. et al. Somatic mitochondrial DNA (mtDNA) mutations in papillary thyroid carcinomas and differential mtDNA sequence variants in cases with thyroid tumours. Oncogene 19, 2060–2066 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Maximo, V., Soares, P., Lima, J., Cameselle-Teijeiro, J. & Sobrinho-Simoes, M. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors. Am. J. Pathol. 160, 1857–1865 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Petros, J. A. et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl Acad. Sci. USA 102, 719–724 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shidara, Y. et al. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res. 65, 1655–1663 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Maximo, V. et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br. J. Cancer 92, 1892–1898 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Grose, R. & Dickson, C. Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev. 16, 179–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Boelaert, K. et al. Pituitary tumor transforming gene and fibroblast growth factor-2 expression: potential prognostic indicators in differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 88, 2341–2347 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Logan, A., Black, E. G., Gonzalez, A. M., Buscaglia, M. & Sheppard, M. C. Basic fibroblast growth factor: an autocrine mitogen of rat thyroid follicular cells? Endocrinology 130, 2363–2372 (1992).

    Article  CAS  PubMed  Google Scholar 

  128. Isozaki, O. et al. Opposite regulation of deoxyribonucleic acid synthesis and iodide uptake in rat thyroid cells by basic fibroblast growth factor: correlation with opposite regulation of c-fos and thyrotropin receptor gene expression. Endocrinology 131, 2723–2732 (1992).

    Article  CAS  PubMed  Google Scholar 

  129. St Bernard, R. et al. Fibroblast growth factor receptors as molecular targets in thyroid carcinoma. Endocrinology 146, 1145–1153 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. De Moerlooze, L. et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal–epithelial signalling during mouse organogenesis. Development 127, 483–492 (2000).

    CAS  PubMed  Google Scholar 

  131. Morikawa, Y. et al. Expression of the fibroblast growth factor receptor-1 in human normal tissues and tumors determined by a new monoclonal antibody. Arch. Pathol. Lab. Med. 120, 490–496 (1996).

    CAS  PubMed  Google Scholar 

  132. Onose, H., Emoto, N., Sugihara, H., Shimizu, K. & Wakabayashi, I. Overexpression of fibroblast growth factor receptor 3 in a human thyroid carcinoma cell line results in overgrowth of the confluent cultures. Eur. J. Endocrinol. 140, 169–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Giordano, S., Ponzetto, C., Di Renzo, M. F., Cooper, C. S. & Comoglio, P. M. Tyrosine kinase receptor indistinguishable from the c-met protein. Nature 339, 155–156 (1989).

    Article  CAS  PubMed  Google Scholar 

  134. Ruco, L. P. et al. Expression of Met protein in thyroid tumours. J. Pathol. 180, 266–270 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Belfiore, A. et al. Negative/low expression of the Met/hepatocyte growth factor receptor identifies papillary thyroid carcinomas with high risk of distant metastases. J. Clin. Endocrinol. Metab. 82, 2322–2328 (1997).

    CAS  PubMed  Google Scholar 

  136. Trovato, M. et al. Expression of the hepatocyte growth factor and c-met in normal thyroid, non-neoplastic, and neoplastic nodules. Thyroid 8, 125–131 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Ruco, L. P., Stoppacciaro, A., Ballarini, F., Prat, M. & Scarpino, S. Met protein and hepatocyte growth factor (HGF) in papillary carcinoma of the thyroid: evidence for a pathogenetic role in tumourigenesis. J. Pathol. 194, 4–8 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Scarpino, S. et al. Papillary carcinoma of the thyroid: evidence for a role for hepatocyte growth factor (HGF) in promoting tumour angiogenesis. J. Pathol. 199, 243–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Wasenius, V. M. et al. MET receptor tyrosine kinase sequence alterations in differentiated thyroid carcinoma. Am. J. Surg. Pathol. 29, 544–549 (2005).

    Article  PubMed  Google Scholar 

  140. Ivan, M., Bond, J. A., Prat, M., Comoglio, P. M. & Wynford-Thomas, D. Activated ras and ret oncogenes induce over-expression of c-met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene 14, 2417–2423 (1997).

    Article  CAS  PubMed  Google Scholar 

  141. Nardone, H. C. et al. c-Met expression in tall cell variant papillary carcinoma of the thyroid. Cancer 98, 1386–1393 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Rubin, I. & Yarden, Y. The basic biology of HER2. Ann. Oncol. 12, S3–S8 (2001).

    Article  PubMed  Google Scholar 

  143. Kato, S. et al. Expression of erbB receptors mRNA in thyroid tissues. Biochim. Biophys. Acta 1673, 194–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Schiff, B. A. et al. Epidermal growth factor receptor (EGFR) is overexpressed in anaplastic thyroid cancer, and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer. Clin. Cancer Res. 10, 8594–8602 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Holting, T., Siperstein, A. E., Clark, O. H. & Duh, Q. Y. Epidermal growth factor (EGF)- and transforming growth factor α-stimulated invasion and growth of follicular thyroid cancer cells can be blocked by antagonism to the EGF receptor and tyrosine kinase in vitro. Eur. J. Endocrinol. 132, 229–235 (1995).

    Article  CAS  PubMed  Google Scholar 

  146. Asmis, L. M., Gerber, H., Kaempf, J. & Studer, H. Epidermal growth factor stimulates cell proliferation and inhibits iodide uptake of FRTL-5 cells in vitro. J. Endocrinol. 145, 513–520 (1995).

    Article  CAS  PubMed  Google Scholar 

  147. Haugen, D. R., Akslen, L. A., Varhaug, J. E. & Lillehaug, J. R. Expression of c-erbB-3 and c-erbB-4 proteins in papillary thyroid carcinomas. Cancer Res. 56, 1184–1188 (1996).

    CAS  PubMed  Google Scholar 

  148. Sugg, S. L. et al. Cytoplasmic staining of erbB-2 but not mRNA levels correlates with differentiation in human thyroid neoplasia. Clin. Endocrinol. (Oxford) 49, 629–637 (1998).

    Article  CAS  Google Scholar 

  149. Akslen, L. A. & Varhaug, J. E. Oncoproteins and tumor progression in papillary thyroid carcinoma: presence of epidermal growth factor receptor, c-erbB-2 protein, estrogen receptor related protein, p21-ras protein, and proliferation indicators in relation to tumor recurrences and patient survival. Cancer 76, 1643–1654 (1995).

    Article  CAS  PubMed  Google Scholar 

  150. Chen, B. K. et al. Co-overexpression of p53 protein and epidermal growth factor receptor in human papillary thyroid carcinomas correlated with lymph node metastasis, tumor size and clinicopathologic stage. Int. J. Oncol. 15, 893–898 (1999).

    CAS  PubMed  Google Scholar 

  151. Soh, E. Y. et al. Vascular endothelial growth factor expression is higher in differentiated thyroid cancer than in normal or benign thyroid. J. Clin. Endocrinol. Metab. 82, 3741–3747 (1997).

    CAS  PubMed  Google Scholar 

  152. Klein, M. et al. Vascular endothelial growth factor gene and protein: strong expression in thyroiditis and thyroid carcinoma. J. Endocrinol. 161, 41–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Bunone, G. et al. Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am. J. Pathol. 155, 1967–1976 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tanaka, K. et al. Expression of vascular endothelial growth factor family messenger RNA in diseased thyroid tissues. Surg. Today 32, 761–768 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Hung, C. J. et al. Expression of vascular endothelial growth factor-C in benign and malignant thyroid tumors. J. Clin. Endocrinol. Metab. 88, 3694–3699 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Yasuoka, H. et al. VEGF-D expression and lymph vessels play an important role for lymph node metastasis in papillary thyroid carcinoma. Mod. Pathol. 18, 1127–1133 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Hall, F. T., Freeman, J. L., Asa, S. L., Jackson, D. G. & Beasley, N. J. Intratumoral lymphatics and lymph node metastases in papillary thyroid carcinoma. Arch. Otolaryngol Head Neck Surg. 129, 716–719 (2003).

    Article  PubMed  Google Scholar 

  158. Katoh, R. et al. Expression of vascular endothelial growth factor (VEGF) in human thyroid neoplasms. Hum. Pathol. 30, 891–897 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Katoh, R. et al. Growth activity in hyperplastic and neoplastic human thyroid determined by an immunohistochemical staining procedure using monoclonal antibody MIB-1. Hum. Pathol. 26, 139–146 (1995).

    Article  CAS  PubMed  Google Scholar 

  160. Basolo, F. et al. Apoptosis and proliferation in thyroid carcinoma: correlation with bcl-2 and p53 protein expression. Br. J. Cancer 75, 537–541 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yoshida, A. et al. Apoptosis and proliferative activity in thyroid tumors. Surg. Today 29, 204–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Volante, M., Croce, S., Pecchioni, C. & Papotti, M. E2F-1 transcription factor is overexpressed in oxyphilic thyroid tumors. Mod. Pathol. 15, 1038–1043 (2002).

    Article  PubMed  Google Scholar 

  163. Kjellman, P. et al. MIB-1 index in thyroid tumors: a predictor of the clinical course in papillary thyroid carcinoma. Thyroid 13, 371–380 (2003).

    Article  PubMed  Google Scholar 

  164. Basolo, F. et al. Cyclin D1 overexpression in thyroid carcinomas: relation with clinico-pathological parameters, retinoblastoma gene product, and Ki67 labeling index. Thyroid 10, 741–746 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Lazzereschi, D. et al. Cyclin D1 and Cyclin E expression in malignant thyroid cells and in human thyroid carcinomas. Int. J. Cancer 76, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  166. Zou, M., Shi, Y., Farid, N. R. & al-Sedairy, S. T. Inverse association between cyclin D1 overexpression and retinoblastoma gene mutation in thyroid carcinomas. Endocrine 8, 61–64 (1998).

    Article  CAS  PubMed  Google Scholar 

  167. Saiz, A. D. et al. Immunohistochemical expression of cyclin D1, E2F-1, and Ki-67 in benign and malignant thyroid lesions. J. Pathol. 198, 157–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Brzezinski, J., Migodzinski, A., Gosek, A., Tazbir, J. & Dedecjus, M. Cyclin E expression in papillary thyroid carcinoma: relation to staging. Int. J. Cancer 109, 102–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Khoo, M. L., Ezzat, S., Freeman, J. L. & Asa, S. L. Cyclin D1 protein expression predicts metastatic behavior in thyroid papillary microcarcinomas but is not associated with gene amplification. J. Clin. Endocrinol. Metab. 87, 1810–1813 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Khoo, M. L., Beasley, N. J., Ezzat, S., Freeman, J. L. & Asa, S. L. Overexpression of cyclin D1 and underexpression of p27 predict lymph node metastases in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 87, 1814–1818 (2002).

    Article  CAS  PubMed  Google Scholar 

  171. Wang, S. et al. The role of cell cycle regulatory protein, cyclin D1, in the progression of thyroid cancer. Mod. Pathol. 13, 882–887 (2000).

    Article  CAS  PubMed  Google Scholar 

  172. Brzezinski, J., Migodzinski, A., Toczek, A., Tazbir, J. & Dedecjus, M. Patterns of cyclin E, retinoblastoma protein, and p21Cip1/WAF1 immunostaining in the oncogenesis of papillary thyroid carcinoma. Clin. Cancer Res. 11, 1037–1043 (2005).

    CAS  PubMed  Google Scholar 

  173. Shi, Y., Zou, M., Farid, N. R. & al-Sedairy, S. T. Evidence of gene deletion of p21WAF1/CIP1, a cyclin-dependent protein kinase inhibitor, in thyroid carcinomas. Br. J. Cancer 74, 1336–1341 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Resnick, M. B., Schacter, P., Finkelstein, Y., Kellner, Y. & Cohen, O. Immunohistochemical analysis of p27/kip1 expression in thyroid carcinoma. Mod. Pathol. 11, 735–739 (1998).

    CAS  PubMed  Google Scholar 

  175. Erickson, L. A. et al. p27kip1 expression distinguishes papillary hyperplasia in Graves' disease from papillary thyroid carcinoma. Mod. Pathol. 13, 1014–1019 (2000).

    Article  CAS  PubMed  Google Scholar 

  176. Yane, K. et al. Lack of p16/CDKN2 alterations in thyroid carcinomas. Cancer Lett. 101, 85–92 (1996).

    Article  CAS  PubMed  Google Scholar 

  177. Tung, W. S. et al. Infrequent CDKN2 mutation in human differentiated thyroid cancers. Mol. Carcinog. 15, 5–10 (1996).

    Article  CAS  PubMed  Google Scholar 

  178. Elisei, R., Shiohara, M., Koeffler, H. P. & Fagin, J. A. Genetic and epigenetic alterations of the cyclin-dependent kinase inhibitors p15INK4b and p16INK4a in human thyroid carcinoma cell lines and primary thyroid carcinomas. Cancer 83, 2185–2193 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Onda, M. et al. Up-regulation of transcriptional factor E2F1 in papillary and anaplastic thyroid cancers. J. Hum. Genet. 49, 312–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Anwar, F., Emond, M. J., Schmidt, R. A., Hwang, H. C. & Bronner, M. P. Retinoblastoma expression in thyroid neoplasms. Mod. Pathol. 13, 562–569 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Ito, T. et al. Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res. 52, 1369–1371 (1992).

    CAS  PubMed  Google Scholar 

  182. Fagin, J. A. et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J. Clin. Invest. 91, 179–184 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Donghi, R. et al. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J. Clin. Invest. 91, 1753–1760 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Dobashi, Y. et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn. Mol. Pathol. 3, 9–14 (1994).

    Article  CAS  PubMed  Google Scholar 

  185. Ho, Y. S., Tseng, S. C., Chin, T. Y., Hsieh, L. L. & Lin, J. D. p53 gene mutation in thyroid carcinoma. Cancer Lett. 103, 57–63 (1996).

    Article  CAS  PubMed  Google Scholar 

  186. Takeuchi, Y. et al. Mutations of p53 in thyroid carcinoma with an insular component. Thyroid 9, 377–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  187. Hosal, S. A. et al. Immunohistochemical localization of p53 in human thyroid neoplasms: correlation with biological behavior. Endocr. Pathol. 8, 21–28 (1997).

    Article  PubMed  Google Scholar 

  188. Brabant, G. et al. E-cadherin: a differentiation marker in thyroid malignancies. Cancer Res. 53, 4987–4993 (1993).

    CAS  PubMed  Google Scholar 

  189. Scheumman, G. F. et al. Clinical significance of E-cadherin as a prognostic marker in thyroid carcinomas. J. Clin. Endocrinol. Metab. 80, 2168–2172 (1995).

    CAS  PubMed  Google Scholar 

  190. Kato, N., Tsuchiya, T., Tamura, G. & Motoyama, T. E-cadherin expression in follicular carcinoma of the thyroid. Pathol. Int. 52, 13–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  191. Soares, P., Berx, G., van Roy, F. & Sobrinho-Simoes, M. E-cadherin gene alterations are rare events in thyroid tumors. Int. J. Cancer 70, 32–38 (1997).

    Article  CAS  PubMed  Google Scholar 

  192. Rocha, A. S. et al. E-cadherin loss rather than β-catenin alterations is a common feature of poorly differentiated thyroid carcinomas. Histopathology 42, 580–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  193. Rocha, A. S. et al. Abnormalities of the E-cadherin–catenin adhesion complex in classical papillary thyroid carcinoma and in its diffuse sclerosing variant. J. Pathol. 194, 358–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  194. Husmark, J., Heldin, N. E. & Nilsson, M. N-cadherin-mediated adhesion and aberrant catenin expression in anaplastic thyroid-carcinoma cell lines. Int. J. Cancer 83, 692–699 (1999).

    Article  CAS  PubMed  Google Scholar 

  195. Garcia-Rostan, G. et al. β-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am. J. Pathol. 158, 987–996 (2001). The first identified molecular alteration in poorly differentiated thyroid carcinomas, explaining the phenotype and behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Cerrato, A. et al. β- and γ-catenin expression in thyroid carcinomas. J. Pathol. 185, 267–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  197. Ishigaki, K. et al. Aberrant localization of β-catenin correlates with overexpression of its target gene in human papillary thyroid cancer. J. Clin. Endocrinol. Metab. 87, 3433–3440 (2002).

    CAS  PubMed  Google Scholar 

  198. Miyake, N. et al. Absence of mutations in the β-catenin and adenomatous polyposis coli genes in papillary and follicular thyroid carcinomas. Pathol. Int. 51, 680–685 (2001).

    Article  CAS  PubMed  Google Scholar 

  199. Colletta, G. et al. Analysis of adenomatous polyposis coli gene in thyroid tumours. Br. J. Cancer 70, 1085–1088 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Cameselle-Teijeiro, J. et al. Somatic but not germline mutation of the APC gene in a case of cribriform-morular variant of papillary thyroid carcinoma. Am. J. Clin. Pathol. 115, 486–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  201. Harach, H. R., Williams, G. T. & Williams, E. D. Familial adenomatous polyposis associated thyroid carcinoma: a distinct type of follicular cell neoplasm. Histopathology 25, 549–561 (1994).

    Article  CAS  PubMed  Google Scholar 

  202. Soravia, C. et al. Familial adenomatous polyposis-associated thyroid cancer: a clinical, pathological, and molecular genetics study. Am. J. Pathol. 154, 127–135 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Huang, Y. et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc. Natl Acad. Sci. USA 98, 15044–15049 (2001). One of the earliest reports describing the use of gene-expression profiling to distinguish normal cells from neoplastic human papillary thyroid carcinoma cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wasenius, V. M. et al. Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin. Cancer Res. 9, 68–75 (2003).

    CAS  PubMed  Google Scholar 

  205. Yang, N. S., Kirkland, W., Jorgensen, T. & Furmanski, P. Absence of fibronectin and presence of plasminogen activator in both normal and malignant human mammary epithelial cells in culture. J. Cell Biol. 84, 120–130 (1980).

    Article  CAS  PubMed  Google Scholar 

  206. Ryu, S., Jimi, S., Eura, Y., Kato, T. & Takebayashi, S. Strong intracellular and negative peripheral expression of fibronectin in tumor cells contribute to invasion and metastasis in papillary thyroid carcinoma. Cancer Lett. 146, 103–109 (1999).

    Article  CAS  PubMed  Google Scholar 

  207. Liu, W., Asa, S. L. & Ezzat, S. 1α, 25-dihydroxyvitamin D3 targets PTEN-dependent fibronectin expression to restore thyroid cancer cell adhesiveness. Mol. Endocrinol. 19, 2349–2357 (2005).

    Article  CAS  PubMed  Google Scholar 

  208. Cerutti, J. M. et al. A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J. Clin. Invest. 113, 1234–1242 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cheung, C. C., Carydis, B., Ezzat, S., Bedard, Y. C. & Asa, S. L. Analysis of ret/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J. Clin. Endocrinol. Metab. 86, 2187–2190 (2001). A key paper in defining the applications of molecular tools to pre-operative patient diagnosis and management.

    Article  CAS  PubMed  Google Scholar 

  210. Katoh, R. et al. Multiple thyroid involvement (intraglandular metastasis) in papillary thyroid carcinoma. A clinicopathologic study of 105 consecutive patients. Cancer 70, 1585–1590 (1992).

    Article  CAS  PubMed  Google Scholar 

  211. Moniz, S. et al. Clonal origin of non-medullary thyroid tumours assessed by non-random X-chromosome inactivation. Eur. J. Endocrinol. 146, 27–33 (2002).

    Article  CAS  PubMed  Google Scholar 

  212. Shattuck, T. M., Westra, W. H., Ladenson, P. W. & Arnold, A. Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. N. Engl. J. Med. 352, 2406–2412 (2005).

    Article  CAS  PubMed  Google Scholar 

  213. Piersanti, M., Ezzat, S. & Asa, S. L. Controversies in papillary microcarcinoma of the thyroid. Endocr. Pathol. 14, 183–191 (2003).

    Article  PubMed  Google Scholar 

  214. Yano, Y. et al. Gene expression profiling identifies platelet-derived growth factor as a diagnostic molecular marker for papillary thyroid carcinoma. Clin. Cancer Res. 10, 2035–2043 (2004).

    Article  CAS  PubMed  Google Scholar 

  215. Hawthorn, L. et al. TIMP1 and SERPIN-A overexpression and TFF3 and CRABP1 underexpression as biomarkers for papillary thyroid carcinoma. Head Neck 26, 1069–1083 (2004).

    Article  PubMed  Google Scholar 

  216. Jarzab, B. et al. Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Res. 65, 1587–1597 (2005).

    Article  CAS  PubMed  Google Scholar 

  217. Takenaka, Y. et al. Malignant transformation of thyroid follicular cells by galectin-3. Cancer Lett. 195, 111–119 (2003).

    Article  CAS  PubMed  Google Scholar 

  218. Cheung, C. C., Ezzat, S., Freeman, J. L., Rosen, I. B. & Asa, S. L. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod. Pathol. 14, 338–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  219. Saggiorato, E. et al. Characterization of thyroid 'follicular neoplasms' in fine-needle aspiration cytological specimens using a panel of immunohistochemical markers: a proposal for clinical application. Endocr. Relat. Cancer 12, 305–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  220. Aldred, M. A. et al. Papillary and follicular thyroid carcinomas show distinctly different microarray expression profiles and can be distinguished by a minimum of five genes. J. Clin. Oncol. 22, 3531–3539 (2004).

    Article  CAS  PubMed  Google Scholar 

  221. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 6, 358–362 (2006).

    Article  CAS  Google Scholar 

  222. Rao, A. S. et al. Wnt/β-catenin signalling mediates anti-neoplastic effects of Imatinib mesylate (Glivec) in anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 91, 159–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  223. Kopp, P. et al. Polyclonal and monoclonal thyroid nodules coexist within human multinodular goiters. J. Clin. Endocrinol. Metab. 79, 134–139 (1994).

    CAS  PubMed  Google Scholar 

  224. Apel, R. L. et al. Clonality of thyroid nodules in sporadic goiter. Diagn. Mol. Pathol. 4, 113–121 (1995).

    Article  CAS  PubMed  Google Scholar 

  225. Jovanovic, L., Delahunt, B., McIver, B., Eberhardt, N. L. & Grebe, S. K. Thyroid gland clonality revisited: the embryonal patch size of the normal human thyroid gland is very large, suggesting X-chromosome inactivation tumor clonality studies of thyroid tumors have to be interpreted with caution. J. Clin. Endocrinol. Metab. 88, 3284–3291 (2003).

    Article  CAS  PubMed  Google Scholar 

  226. Martin, J. H. Neuroanatomy: Text and Atlas 2nd edn (Appleton & Lange, Stamford, Connecticut, 1996).

    Google Scholar 

Download references

Acknowledgements

Some of the work reviewed here was supported by grants from the Canadian Institutes of Health Research and the Toronto Medical Laboratories. The authors apologize to the many colleagues whose work is not quoted directly owing to size restrictions of this Review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia L. Asa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

Thyroid cancer

FURTHER INFORMATION

American Thyroid Association

Endocrine Society

Genbank

Glossary

C cells

Parafollicular cells of the thyroid that have a clear cytoplasm and are members of the peptide-hormone-secreting family (also known as 'neuroendocrine' cells). These cells are mainly involved in the production of calcitonin.

Adenoma

A benign epithelial tumour in which the cells form recognizable glandular (in this case follicular) structures or in which the cells are clearly derived from glandular (follicular) epithelium.

Well-differentiated thyroid carcinoma

A carcinoma that is composed of well-differentiated follicular epithelial cells. There are two main groups — papillary and follicular carcinoma — each of which has variants. These tumours generally have a good prognosis.

Poorly-differentiated thyroid carcinoma

A neoplasm derived from follicular epithelial cells that shows loss of structural and functional differentiation. Characteristically, these lesions show widely infiltrative growth, necrosis, vascular invasion and numerous mitotic figures.

Undifferentiated thyroid carcinoma

A tumour that is composed wholly or partially of undifferentiated cells without structural follicular-cell differentiation. There are three main morphological patterns: squamoid, pleomorphic giant cell and spindle cell. These tumours have a very poor prognosis.

Papillary carcinoma

Carcinomas that are composed of well-differentiated follicular epithelial cells and are characterized by distinctive nuclear features. Variants include classical forms with papillary architecture, follicular variants, oncocytic, tall-cell, solid and cribriform types, each with distinct growth patterns and behaviours.

Follicular carcinoma

A tumour that is composed of well-differentiated follicular epithelial cells and lacks nuclear features of papillary carcinoma. These tumours are capable of vascular invasion, which distinguishes them from follicular adenoma. Variants include oncocytic and clear-cell types.

Thyroiditis

A disease of the thyroid that is caused by inflammation.

Goitre

Enlargement of the thyroid gland. A goitre can be associated with normal, increased or decreased thyroid hormone levels in the blood, and might be due to primary thyroid disease or caused by infiltration or stimulation of the gland by hormones and other factors.

Follicles

The small spherical components of the thyroid gland that are lined by epithelium and contain colloid in varying amounts. The colloid provides storage for the thyroid-hormone precursor thyroglobulin.

Hypothyroidism

Results from a deficiency of thyroid hormone, and is characterized by a decrease in basal metabolic rate and by tiredness, lethargy and sensitivity to cold, as well as other, secondary symptoms.

Microcarcinoma

A tumour defined as less than 1 cm in maximum dimension. It is a recognized variant of papillary thyroid carcinoma, is common, is often multifocal, and is usually considered to be an incidental finding that has no clinical significance.

De-differentiation

Loss of the differentiated characteristics that define mature cells with the full capacity for normal physiological function. In the thyroid, these characteristics include formation of thyroid follicles and production of thyroglobulin and the sodium iodide symporter.

MIB-1 index

A proliferation index that is determined by immunolabelling with the monoclonal antibody MIB-1. This antibody identifies the Ki-67 nuclear protein that is expressed throughout the active cell cycle but is absent in resting cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, T., Ezzat, S. & Asa, S. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6, 292–306 (2006). https://doi.org/10.1038/nrc1836

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing