Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Salvador–Warts–Hippo pathway — an emerging tumour-suppressor network

Key Points

  • The Salvador–Warts–Hippo (SWH) pathway controls organ size by modulating cell growth, proliferation and apoptosis.

  • Deregulation of this pathway in Drosophila melanogaster leads to dramatic increases in organ size.

  • Proteins predicted to function in the SWH pathway include the cadherin Fat, the band 4.1 proteins Expanded and Merlin, the kinases Hippo, Warts and Discs overgrown, the adaptor molecules Salvador, Mats and Dachs, dRASSF and the transcriptional co-activator Yorkie.

  • SWH pathway components are conserved throughout evolution from yeast to humans, and the pathway has been implicated in the genesis of human cancers.

  • The human orthologue of merlin (NF2) is a bona fide tumour-suppressor gene, which is mutated in the familial cancer syndrome neurofibromatosis type 2. Homologues of warts, salvador, mats (mob as tumour suppressor), dRASSF (Ras association family) and yorkie have also been implicated in mammalian tumorigenesis.

  • Important target genes of the SWH pathway include cyclin E (which drives cell proliferation), DIAP1 (which inhibits apoptosis) and the bantam microRNA. The pathway also controls expanded and four-jointed expression in apparent regulatory feedback loops.

  • Potential regulatory processes that control SWH pathway activity include the modification of expression and sub-cellular localization of Expanded, the modulation of expression levels of Warts and the phosphorylation of Yorkie.

Abstract

Intense research over the past four years has led to the discovery and characterization of a novel signalling network, known as the Salvador–Warts–Hippo (SWH) pathway, involved in tissue growth control in Drosophila melanogaster. At present, eleven proteins have been implicated as members of this pathway, and several downstream effector genes have been characterized. The importance of this pathway is emphasized by its evolutionary conservation, and by increasing evidence that its deregulation occurs in human tumours. Here, we review the main findings from Drosophila and the implications that these have for tumorigenesis in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue that lacks SWH pathway activity develops tumours.
Figure 2: Components of the SWH pathway.

Similar content being viewed by others

References

  1. Conlon, I. & Raff, M. Size control in animal development. Cell 96, 235–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 9, 534–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).

    CAS  PubMed  Google Scholar 

  4. Tapon, N. et al. Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467–478 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Kango-Singh, M. et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129, 5719–5730 (2002). References 4 and 5 describe the discovery of the sav gene, and reference 4 outlines its functional link with wts and hence a new tumour-suppressor pathway.

    Article  CAS  PubMed  Google Scholar 

  6. Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Jia, J., Zhang, W., Wang, B., Trinko, R. & Jiang, J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 17, 2514–2519 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pantalacci, S., Tapon, N. & Leopold, P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nature Cell Biol. 5, 921–927 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Udan, R. S., Kango-Singh, M., Nolo, R., Tao, C. & Halder, G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nature Cell Biol. 5, 914–920 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Wu, S., Huang, J., Dong, J. & Pan, D. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421–434 (2005). This paper describes the identification of YKI as a crucial transcriptional regulator in growth control and an important target of the SWH pathway.

    Article  CAS  PubMed  Google Scholar 

  12. Lai, Z. C. et al. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120, 675–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Bennett, F. C. & Harvey, K. F. Fat Cadherin Modulates Organ Size in Drosophila via the Salvador/Warts/Hippo Signaling Pathway. Curr. Biol. 16, 2101–2110 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Cho, E. et al. Delineation of a Fat tumor suppressor pathway. Nature Genet. 38, 1142–1150 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Hamaratoglu, F. et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nature Cell Biol. 8, 27–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Mao, Y. et al. Dachs: an unconventional myosin that functions downstream of Fat to regulate growth, affinity and gene expression in Drosophila. Development 133, 2539–2551 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Polesello, C., Huelsmann, S., Brown, N. H. & Tapon, N. The Drosophila RASSF homolog antagonizes the hippo pathway. Curr. Biol. 16, 2459–2465 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Silva, E., Tsatskis, Y., Gardano, L., Tapon, N. & McNeill, H. The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr. Biol. 16, 2081–2089 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Willecke, M. et al. The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr. Biol. 16, 2090–2100 (2006). References 13, 14, 15, 18 and 19 shed some light on events upstream of the core components of the SWH pathway. They implicate the band 4. 1 proteins MER and EX, as well as the atypical cadherin Fat and the unconventional myosin Dachs in pathway activation.

    Article  CAS  PubMed  Google Scholar 

  20. Pellock, B. J., Buff, E., White, K. & Hariharan, I. K. The Drosophila tumor suppressors Expanded and Merlin differentially regulate cell cycle exit, apoptosis, and Wingless signaling. Dev. Biol. 15 December 2006 [epub ahead of print].

  21. McClatchey, A. I. Merlin and ERM proteins: unappreciated roles in cancer development? Nature Rev. Cancer 3, 877–883 (2003).

    Article  CAS  Google Scholar 

  22. Bretscher, A., Edwards, K. & Fehon, R. G. ERM proteins and merlin: integrators at the cell cortex. Nature Rev. Mol. Cell Biol. 3, 586–599 (2002).

    Article  CAS  Google Scholar 

  23. Kloss, B. et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 94, 97–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Zilian, O. et al. double-time is identical to discs overgrown, which is required for cell survival, proliferation and growth arrest in Drosophila imaginal discs. Development 126, 5409–5420 (1999).

    CAS  PubMed  Google Scholar 

  25. Klein, T. J., Jenny, A., Djiane, A. & Mlodzik, M. CKIepsilon/discs overgrown promotes both Wnt-Fz/beta-catenin and Fz/PCP signaling in Drosophila. Curr. Biol. 16, 1337–1343 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Strutt, H., Price, M. A. & Strutt, D. Planar polarity is positively regulated by casein kinase Iepsilon in Drosophila. Curr. Biol. 16, 1329–1336 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Price, M. A. & Kalderon, D. Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell 108, 823–835 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Vavvas, D., Li, X., Avruch, J. & Zhang, X. F. Identification of Nore1 as a potential Ras effector. J. Biol. Chem. 273, 5439–5442 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Dammann, R. et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21. 3. Nature Genet. 25, 315–319 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Tommasi, S. et al. RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene 21, 2713–2720 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Vos, M. D., Martinez, A., Ellis, C. A., Vallecorsa, T. & Clark, G. J. The pro-apoptotic Ras effector Nore1 may serve as a Ras-regulated tumor suppressor in the lung. J. Biol. Chem. 278, 21938–21943 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Eckfeld, K. et al. RASSF4/AD037 is a potential ras effector/tumor suppressor of the RASSF family. Cancer Res. 64, 8688–8693 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Scheel, H. & Hofmann, K. A novel interaction motif, SARAH, connects three classes of tumor suppressor. Curr. Biol. 13, R899–R900 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Tamaskovic, R., Bichsel, S. J. & Hemmings, B. A. NDR family of AGC kinases--essential regulators of the cell cycle and morphogenesis. FEBS Lett. 546, 73–80 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Dan, I., Watanabe, N. M. & Kusumi, A. The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol. 11, 220–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Bardin, A. J. & Amon, A. Men and sin: what's the difference? Nature Rev. Mol. Cell Biol. 2, 815–826 (2001).

    Article  CAS  Google Scholar 

  37. Bosl, W. J. & Li, R. Mitotic-exit control as an evolved complex system. Cell 121, 325–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Krapp, A., Gulli, M. P. & Simanis, V. SIN and the art of splitting the fission yeast cell. Curr. Biol. 14, R722–R730 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Yagi, R., Chen, L. F., Shigesada, K., Murakami, Y. & Ito, Y. A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. ENBO J. 18, 2551–2562 (1999).

    CAS  Google Scholar 

  40. Strano, S. et al. Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J. Biol. Chem. 276, 15164–15173 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Vassilev, A., Kaneko, K. J., Shu, H., Zhao, Y. & DePamphilis, M. L. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 15, 1229–1241 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Basu, S., Totty, N. F., Irwin, M. S., Sudol, M. & Downward, J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14–3-3 and attenuation of p73-mediated apoptosis. Mol. Cell 11, 11–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. St John, M. A. et al. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nature Genet. 21, 182–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Overholtzer, M. et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl Acad. Sci. USA 103, 12405–12410 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Agathanggelou, A., Cooper, W. N. & Latif, F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res. 65, 3497–3508 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. McClatchey, A. I. & Giovannini, M. Membrane organization and tumorigenesis — the NF2 tumor suppressor, Merlin. Genes Dev. 19, 2265–2277 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez-Gomez, P. et al. CpG island methylation in sporadic and neurofibromatis type 2-associated schwannomas. Clin. Cancer Res. 9, 5601–5606 (2003).

    CAS  PubMed  Google Scholar 

  50. Lomas, J. et al. Genetic and epigenetic alteration of the NF2 gene in sporadic meningiomas. Genes Chromosomes Cancer 42, 314–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Buckley, P. G. et al. Identification of genetic aberrations on chromosome 22 outside the NF2 locus in schwannomatosis and neurofibromatosis type 2. Hum. Mutat. 26, 540–549 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi, Y. et al. Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin. Cancer Res. 11, 1380–1385 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Aylon, Y. et al. A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev. 20, 2687–2700 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weber, R. G., Sommer, C., Albert, F. K., Kiessling, M. & Cremer, T. Clinically distinct subgroups of glioblastoma multiforme studied by comparative genomic hybridization. Lab. Invest. 74, 108–119 (1996).

    CAS  PubMed  Google Scholar 

  56. Snijders, A. M. et al. Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene 24, 4232–4242 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Lambros, M. B. et al. Analysis of ovarian cancer cell lines using array-based comparative genomic hybridization. J. Pathol. 205, 29–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Imoto, I. et al. Expression of cIAP1, a target for 11q22 amplification, correlates with resistance of cervical cancers to radiotherapy. Cancer Res. 62, 4860–4866 (2002).

    CAS  PubMed  Google Scholar 

  59. Imoto, I. et al. Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res. 61, 6629–6634 (2001).

    CAS  PubMed  Google Scholar 

  60. Hermsen, M. et al. Chromosomal changes in relation to clinical outcome in larynx and pharynx squamous cell carcinoma. Cell Oncol. 27, 191–198 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dai, Z. et al. A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum. Mol. Genet. 12, 791–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Bashyam, M. D. et al. Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia 7, 556–562 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Baldwin, C., Garnis, C., Zhang, L., Rosin, M. P. & Lam, W. L. Multiple microalterations detected at high frequency in oral cancer. Cancer Res. 65, 7561–7567 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Pfeifer, G. P. et al. Methylation of the RASSF1A gene in human cancers. Biol. Chem. 383, 907–914 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Khokhlatchev, A. et al. Identification of a novel Ras-regulated proapoptotic pathway. Curr. Biol. 12, 253–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Praskova, M., Khoklatchev, A., Ortiz-Vega, S. & Avruch, J. Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem. J. 381, 453–462 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Avruch, J., Praskova, M., Ortiz-Vega, S., Liu, M. & Zhang, X. F. Nore1 and RASSF1 Regulation of Cell Proliferation and of the MST1/2 Kinases. Methods Enzymol. 407, 290–310 (2005).

    Article  CAS  Google Scholar 

  68. Oh, H. J. et al. Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res. 66, 2562–2569 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Harjes, E. et al. GTP-Ras disrupts the intramolecular complex of C1 and RA domains of Nore1. Structure 14, 881–888 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Polesello, C., Huelsmann, S., Brown, N. H. & Tapon, N. The Drosophila RASSF homologue antagnosis the Hippo pathway. Curr. Biol. 16, 2459–2465 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Aoyama, Y., Avruch, J. & Zhang, X. F. Nore1 inhibits tumor cell growth independent of Ras or the MST1/2 kinases. Oncogene 23, 3426–3433 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Graves, J. D. et al. Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J. 17, 2224–2234 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kakeya, H., Onose, R. & Osada, H. Caspase-mediated activation of a 36-kDa myelin basic protein kinase during anticancer drug-induced apoptosis. Cancer Res. 58, 4888–4894 (1998).

    CAS  PubMed  Google Scholar 

  74. O'Neill, E., Rushworth, L., Baccarini, M. & Kolch, W. Role of the kinase MST2 in suppression of apoptosis by the proto-oncogene product Raf-1. Science 306, 2267–2270 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Hariharan, I. K. & Bilder, D. Regulation of imaginal disc growth by tumor-suppressor genes in Drosophila. Annu. Rev. Genet. 40, 335–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Maitra, S., Kulikauskas, R. M., Gavilan, H. & Fehon, R. G. The tumor suppressors Merlin and Expanded function cooperatively to modulate receptor endocytosis and signaling. Curr. Biol. 16, 702–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Hariharan, I. K. Growth regulation: a beginning for the hippo pathway. Curr. Biol. 16, R1037–R1039 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Glantschnig, H., Rodan, G. A. & Reszka, A. A. Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. J. Biol. Chem. 277, 42987–42996 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Pedraza, L. G., Stewart, R. A., Li, D. M. & Xu, T. Drosophila Src-family kinases function with Csk to regulate cell proliferation and apoptosis. Oncogene 23, 4754–4762 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Vidal, M., Larson, D. E. & Cagan, R. L. Csk-deficient boundary cells are eliminated from normal Drosophila epithelia by exclusion, migration, and apoptosis. Dev. Cell 10, 33–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Read, R. D., Bach, E. A. & Cagan, R. L. Drosophila C-terminal Src kinase negatively regulates organ growth and cell proliferation through inhibition of the Src, Jun N-terminal kinase, and STAT pathways. Mol. Cell Biol. 24, 6676–6689 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nolo, R., Morrison, C. M., Tao, C., Zhang, X. & Halder, G. The bantam microRNA is a target of the Hippo tumor-suppressor pathway. Curr. Biol. 16, 1895–1904 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Thompson, B. J. & Cohen, S. M. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Hipfner, D. R., Weigmann, K. & Cohen, S. M. The bantam gene regulates Drosophila growth. Genetics 161, 1527–1537 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Raisin, S., Pantalacci, S., Breittmayer, J. P. & Leopold, P. A new genetic locus controlling growth and proliferation in Drosophila melanogaster. Genetics 164, 1015–1025 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Strutt, H., Mundy, J., Hofstra, K. & Strutt, D. Cleavage and secretion is not required for four-jointed function in Drosophila patterning. Development 131, 881–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Matakatsu, H. & Blair, S. S. Interactions between Fat and Dachsous and the regulation of planar cell polarity in the Drosophila wing. Development 131, 3785–3794 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Cho, E. & Irvine, K. D. Action of fat, four-jointed, dachsous and dachs in distal-to-proximal wing signaling. Development 131, 4489–4500 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Jaiswal, M., Agrawal, N. & Sinha, P. Fat and Wingless signaling oppositely regulate epithelial cell-cell adhesion and distal wing development in Drosophila. Development 133, 925–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Mikeladze-Dvali, T. et al. The growth regulators warts/lats and melted interact in a bistable loop to specify opposite fates in Drosophila R8 photoreceptors. Cell 122, 775–787 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Emoto, K., Parrish, J. Z., Jan, L. Y. & Jan, Y. N. The tumour suppressor Hippo acts with the NDR kinases in dendritic tiling and maintenance. Nature 443, 210–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Colombani, J., Polesello, C., Josue, F. & Tapon, N. Dmp53 activates the hippo pathway to promote cell death in response to DNA damage. Curr. Biol. 16, 1453–1458 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Brodsky, M. H. et al. Drosophila p53 binds a damage response element at the reaper locus. Cell 101, 103–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Lehtinen, M. K. et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125, 987–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Prober, D. A. & Edgar, B. A. Ras1 promotes cellular growth in the Drosophila wing. Cell 100, 435–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Lallemand, D., Curto, M., Saotome, I., Giovannini, M. & McClatchey, A. I. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 17, 1090–1100 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hwang, H. C. & Clurman, B. E. Cyclin E in normal and neoplastic cell cycles. Oncogene 24, 2776–2786 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.H. is a Leukemia and Lymphoma Society Special Fellow, and the recipient of a Career Development Award from the International Human Frontier Science Program Organization. The laboratory of K.H. is supported by the National Health and Medical Research Council of Australia. Work in the laboratory of N.T. is funded by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kieran Harvey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Peter MacCallum Cancer Centre

Nicolas Tapon's homepage

Glossary

Genetic mosaic screens

The analysis of clones of tissue that harbour homozygous mutations in random genes in an otherwise heterozygous animal that cause a phenotype of interest.

Genetic epistasis experiments

The analysis of dominance of phenotypes generated by the altered function of two or more gene products. Genetic epistasis experiments are often used to predict the order of gene products within signalling pathways.

LIM domain

LIM domains are protein structural domains that are comprised of two contiguous Zinc-finger domains separated by a 2-amino acid residue hydrophobic linker. They are named after their initial discovery in the proteins LIN11, ISL1 and MEC3.

Interommatidial cell

A specific cell type that eventually adopts pigment or bristle cell fates, and surrounds the cone and photoreceptor cells in the Drosophila eye, optically insulating the individual units of the compound eye from each other.

Ectopic proliferation

The generation of daughter cells at a developmental stage or localization within an organ in which cells would normally be quiescent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, K., Tapon, N. The Salvador–Warts–Hippo pathway — an emerging tumour-suppressor network. Nat Rev Cancer 7, 182–191 (2007). https://doi.org/10.1038/nrc2070

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing