Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Darwinian medicine: a case for cancer

Abstract

Epidemiological, genetic and molecular biological studies have collectively provided us with a rich source of data that underpins our current understanding of the aetiology and molecular pathogenesis of cancer. But this perspective focuses on proximate mechanisms, and does not provide an adequate explanation for the prevalence of tumours and cancer in animal species or what seems to be the striking vulnerability of Homo sapiens. The central precept of Darwinian medicine is that vulnerability to cancer, and other major diseases, arises at least in part as a consequence of the 'design' limitations, compromises and trade-offs that characterize evolutionary processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cancer lottery.
Figure 2: Programmed stem cell behaviour and cancer risk.
Figure 3: The cancer lottery: an evolutionary heritage.

Similar content being viewed by others

References

  1. Komarova, N. L. & Wodarz, D. Evolutionary dynamics of mutator phenotypes in cancer: implications for chemotherapy. Cancer Res. 63, 6635–6642 (2003).

    CAS  PubMed  Google Scholar 

  2. Evan, G. I. Can't kick that oncogene habit. Cancer Cell 10, 345–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Murray, C. J. L. & Lopez, A. D. (eds) The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020 (Harvard University Press, Cambridge, Massachusetts, 1996).

    Google Scholar 

  4. Jones, S. B. Cancer in the developing world: a call to action. Brit. Med. J. 319, 505–508 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Plesnicar, S. (ed.). Cancer in the Emerging World (W B Saunders, Philadelphia, 2001).

    Google Scholar 

  6. Shimkin, M. B. Contrary to nature — cancer (US Department of Health, Education and Welfare, Public Health Service, National Institutes of Health, 1977).

    Google Scholar 

  7. Brothwell, D. R. & Sandison, A. T. Diseases in antiquity (Charles Thomas Publishers, Illinois, 1967).

    Google Scholar 

  8. Greaves, M. Cancer. The Evolutionary Legacy (Oxford University Press, Oxford, 2000).

    Google Scholar 

  9. Welch, H. G. & Black, W. C. Using autopsy series to estimate the disease 'reservoir' for ductal carcinoma in situ of the breast: how much more breast cancer can we find? Ann. Int. Med. 127, 1023–1028 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Kassouf, W., Aprikian, A. G., Laplante, M. & Tanguay, S. Natural history of renal masses followed expectantly. J. Urol. 171, 111–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Franceschi, S. & La Vecchia, C. in Trends in cancer incidence and mortality (eds Doll, R., Fraumeni, J. F. J. & Muir, C. S.) 393–414 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1994).

    Google Scholar 

  12. Mutter, G. L. et al. Molecular identification of latent precancers in histologically normal endometrium. Cancer Res. 61, 4311–4314 (2001).

    CAS  PubMed  Google Scholar 

  13. Larson, P. S., de las Morenas, A., Cupples, L. A., Huang, K. & Rosenberg, C. L. Genetically abnormal clones in histologically normal breast tissue. Am. J. Pathol. 152, 1591–1598 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Westra, W. H. et al. K-ras oncogene activation in atypical alveolar hyperplasias of the human lung. Cancer Res. 56, 2224–2228 (1996).

    CAS  PubMed  Google Scholar 

  15. Jin, C. et al. Clonal chromosome aberrations accumulate with age in upper aerodigestive tract mucosa. Mutat. Res. 374, 63–72 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Mori, H. et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc. Natl Acad. Sci. USA 99, 8242–8247 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schlumberger, H. G. & Lucke, B. Tumors of fishes, amphibians and reptiles. Cancer Res. 8, 657–754 (1948).

    CAS  PubMed  Google Scholar 

  18. Rothschild, B. M., Tanke, D., Hershkovitz, I. & Schultz, M. Mesozoic neoplasia: origins of haeman-gioma in the Jurassic age. Lancet 351, 1862 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Rothschild, B. M., Witzke, B. J. & Hershkovitz, I. Metastatic cancer in the Jurassic. Lancet 354, 398 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Becker, F. F. (ed.) Cancer (Plenum Press, New York, 1975).

    Google Scholar 

  21. National Cancer Institute. Neoplasms and related disorders of invertebrate and lower vertebrate animals. Monograph 31 (1969).

  22. Clevers, H. Stem cells, asymmetric division and cancer. Nature Genet. 37, 1027–1028 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Pinkston, J. M., Garrigan, D., Hansen, M. & Kenyon, C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313, 971–975 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Aguirre, A. A., Brojer, C. & Morner, T. Descriptive epidemiology of roe deer mortality in Sweden. J. Wildl. Dis. 35, 753–762 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Lipscomb, T. P. et al. Common metastatic carcinoma of California sea lions (Zalophus californianus): evidence of genital origin and association with novel gammaherpesvirus. Vet. Pathol. 37, 609–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Priester, W. A. & McKay, F. W. The occurrence of tumors in domestic animals. Natl Cancer Inst. Monogr. 54, 1–210 (1980).

    Google Scholar 

  27. MacVean, D. W., Monlux, A. W., Anderson, P. S. J., Silberg, S. L. & Roszel, J. F. Frequency of canine and feline tumors in a defined population. Vet. Pathol. 15, 700–715 (1978).

    Article  CAS  PubMed  Google Scholar 

  28. Fowler, M. E. in Veterinary cancer medicine (eds. Theilen, G. H. & Madewell, B. R.) 649–662 (Lea & Febiger, Philadelphia, 1987).

    Google Scholar 

  29. Priester, W. A. & Mantel, N. Occurrence of tumors in domestic animals. Data from 12 United States and Canadian colleges of veterinary medicine. J. Natl Cancer Inst. 47, 1333–1344 (1971).

    CAS  PubMed  Google Scholar 

  30. Montali, R. J. & Migaki, G. (eds) Pathology of zoo animals (Smithsonian Institution Press, Washington DC, 1980).

    Google Scholar 

  31. Harrenstien, L. A., Munson, L., Seal, U. S. & American Zoo and Aquarium Association Mammary Cancer Study Group. Mammary cancer in captive wide felids and risk factors for its development: a retrospective study of the clinical behaviour of 31 cases. J. Zoo Wildlife Med. 27, 468–476 (1996).

    Google Scholar 

  32. Cotchin, E. A general survey of tumours in the horse. Equine Vet. J. 9, 16–21 (1977).

    Article  CAS  PubMed  Google Scholar 

  33. Greisemer, R. A. in Handbook of laboratory animal science Vol. 3 (eds Hau, J. & van Hoosier, G.) 309–323 (CRC Press, Cleveland, 1976).

    Google Scholar 

  34. Leroi, A. M., Koufopanou, V. & Burt, A. Cancer selection. Nature Rev. Cancer 3, 226–231 (2003).

    Article  CAS  Google Scholar 

  35. Olson, M. V. & Varki, A. Sequencing the chimpanzee genome: insights into human evolution and disease. Nature Rev. Genet. 4, 20–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Lair, S., Barker, I. K., Mehren, K. G. & Williams, E. S. Epidemiology of neoplasia in captive black-footed ferrets (Mustela nigripes), 1986–1996. J. Zoo Wildl. Med. 33, 204–213 (2002).

    Article  PubMed  Google Scholar 

  37. Martineau, D. et al. Cancer in wildlife, a case study: beluga from the St. Lawrence estuary, Québec, Canada. Environ. Health Perspect. 110, 285–291 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Williams, G. C. & Nesse, R. M. The dawn of Darwinian medicine. Q. Rev. Biol. 66, 1–22 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Nesse, R. M., Stearns, S. C. & Omenn, G. S. Medicine needs evolution. Science 311, 1071 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Nesse, R. M. & Williams, G. Evolution and healing. The new science of Darwinian medicine (Weidenfeld & Nicolson, 1995).

    Google Scholar 

  41. Stearns, S. C. (ed.) Evolution in health and disease (Oxford University Press, Oxford, 1999).

    Google Scholar 

  42. Stearns, S. C. & Ebert, D. Evolution in health and disease. Q. Rev. Biol. 76, 417–432 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Ewald, P. W. Evolution of infectious disease (Oxford University Press, Oxford, 1994).

    Google Scholar 

  44. Gluckman, P. & Hanson, M. Mismatch. Why our world no longer fits our bodies (Oxford University Press, Oxford, 2006).

    Google Scholar 

  45. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  46. Wodarz, D. Somatic evolution of cancer cells. Semin. Cancer Biol. 15, 436–450 (2005).

    Article  CAS  Google Scholar 

  47. Merlo, L. M. F., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary process. Nature Rev. Cancer 6, 924–935 (2006).

    Article  CAS  Google Scholar 

  48. Mayr, E. One long argument. Charles Darwin and the genesis of modern evolutionary thought (Harward University Press, Boston, 1991).

    Google Scholar 

  49. Williams, G. C. Adaptation and natural selection (Princeton University Press, Princeton, New Jersey, 1966).

    Google Scholar 

  50. Dawkins, R. The blind watchmaker (Langman Sci Tech, Harlow, UK, 1986).

    Google Scholar 

  51. Ridley, M. Evolution (Blackwell Science, Cambridge, MA, 1996).

    Google Scholar 

  52. Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer 4, 177–183 (2004).

    Article  CAS  Google Scholar 

  53. Sjöblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Sniegowski, P. Evolution: setting the mutation rate. Curr. Biol. 7, R487–R488 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Weinberg, R. A. The biology of cancer (Garland Science, New York, 2007).

    Google Scholar 

  56. Bridges, B. A. Spontaneous mutation: some conceptual difficulties. Mutat. Res. 304, 13–17 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet. 27, 247–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Vilenchik, M. M. & Knudson, A. G. Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc. Natl Acad. Sci. USA 100, 12871–12876 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Greaves, M. F. & Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nature Rev. Cancer 3, 639–649 (2003).

    Article  CAS  Google Scholar 

  60. Lieber, M. R. Pathological and physiological double-strand breaks. Roles in cancer, aging, and the immune system. Am. J. Pathol. 153, 1323–1332 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rabbitts, T. H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Shaffer, A. L., Rosenwald, A. & Staudt, L. M. Lymphoid malignancies: the dark side of B-cell differentiation. Nature Rev. Immunol 2, 920–933 (2002).

    Article  CAS  Google Scholar 

  63. Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA 95, 11816–11821 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cha, R. S., Thilly, W. G. & Zarbl, H. N-nitroso-N-methylurea-induced rat mammary tumors arise from cells with preexisting oncogenic Hras1 gene mutations. Proc. Natl Acad. Sci. USA 91, 3749–3753 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jonason, A. S. et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl Acad. Sci. USA 93, 14025–14029 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, X., Lee, K., Said, J., Gong, X. & Zhang, K. Association of Ig/BCL6 translocations with germinal center B lymphocytes in human lymphoid tissues: implications for malignant transformation. Blood 108, 2006–2012 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thilly, W. G. Have environmental mutagens caused oncomutations in people? Nature Genet. 34, 255–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Greaves, M. Infection, immune responses and the aetiology of childhood leukaemia. Nature Rev. Cancer 6, 193–203 (2006).

    Article  CAS  Google Scholar 

  69. Papac, R. J. Spontaneous regression of cancer. Cancer Treat. Rev. 22, 395–423 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Holman, D. J. & Wood, J. W. in Reproductive ecology and human evolution (ed. Ellison, P. T.) 15–38 (Aldine, 2001).

    Google Scholar 

  71. Leroi, A. M. Mutants: on the form, varieties and errors of the human body (HarperCollins, London, 2004).

    Google Scholar 

  72. Crow, J. F. The odds of losing at genetic roulette. Nature 397, 293–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Eyre-Walker, A. & Keightley, P. D. High genomic deleterious mutation rates in hominids. Nature 397, 344–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Topczewska, J. M. et al. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nature Med. 12, 925–932 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  76. Hancock, B. W., Newlands, E. S. & Berkowitz, R. S. (eds) Gestational trophoblastic disease (Chapman & Hall Medical Publishers, London, 1997).

    Google Scholar 

  77. Maris, J. M. & Denny, C. T. Focus on embryonal malignancies. Cancer Cell 2, 447–450 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Graham, J. Cancer selection: the new theory of evolution (Aculeus, Lexington, 1992).

    Google Scholar 

  79. Parkin, D. M. et al. (eds) International incidence of childhood cancer (IARC Scientific Publications, Lyon, 1988).

    Book  Google Scholar 

  80. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975).

    Article  CAS  PubMed  Google Scholar 

  81. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Pardal, R., Clarke, M. F. & Morrison, S. J. Applying the principles of stem-cell biology to cancer. Nature Rev. Cancer 3, 895–902 (2003).

    Article  CAS  Google Scholar 

  83. Knudson, A. G. Stem cell regulation, tissue ontogeny, and oncogenic events. Semin. Cancer Biol. 3, 99–106 (1992).

    CAS  PubMed  Google Scholar 

  84. Nunney, L. Lineage selection and the evolution of multistage carcinogenesis. Proc. R. Soc. Lond. B 266, 493–498 (1999).

    Article  CAS  Google Scholar 

  85. Galis, F. & Metz, J. A. J. Anti-cancer selection as a source of developmental and evolutionary constraints. Bioessays 25, 1035–1039 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Kavanagh, K. D. Embedded molecular switches, anticancer selection, and effects on ontogenetic rates: a hypothesis of developmental constraint on morphogenesis and evolution. Evolution 57, 939–948 (2003).

    CAS  PubMed  Google Scholar 

  87. Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Meletis, K., Wirta, V., Hede, S.-M., Nistér, M. & Lundeberg, J. p53 suppresses the self-renewal of adult neural stem cells. Development 133, 363–369 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Janzen, V. et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443, 421–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–912 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Clevers, H. Stem cells, asymmetric division and cancer. Nature Genet. 37, 1027–1028 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Merok, J. R., Lansita, J. A., Tunstead, J. R. & Sherley, J. L. Cosegregation of chromosomes containing immortal DNA strands in cells that cycle with asymmetric stem cell kinetics. Cancer Res. 62, 6791–6795 (2002).

    CAS  PubMed  Google Scholar 

  95. Damelin, M., Sun, Y. E., Brundula Sodja, V. & Bestor, T. H. Decatenation checkpoint deficiency in stem and progenitor cells. Cancer Cell 8, 479–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Cavalli-Sforza, L. L. Genes, people and language (Alan Lane Penguin Press, London, 2000).

    Google Scholar 

  97. Szabo, C. I. & King, M. -C. Population genetics of BRCA1 and BRCA2. Am. J. Hum. Genet. 60, 1013–1020 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Eaton, S. B. et al. Evolutionary health promotion. Prev. Med. 34, 109–118 (2002).

    Article  PubMed  Google Scholar 

  99. Loomis, W. F. Skin-pigment regulation of vitamin-D biosynthesis in man. Science 157, 501–506 (1967).

    Article  CAS  PubMed  Google Scholar 

  100. Jobling, M. A., Hurles, M. E. & Tyler-Smith, C. Human evolutionary genetics (Garland Science, New York, 2004).

    Google Scholar 

  101. Jones, S. In the blood (Harper Collins, London, 1996).

    Google Scholar 

  102. Eaton, S. B. et al. Women's reproductive cancers in evolutionary context. Q. Rev. Biol. 69, 353–367 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Henderson, B. E., Ross, R. K., Pike, M. C. & Casagrande, J. T. Endogenous hormones as a major factor in human cancer. Cancer Res. 42, 3232–3239 (1982).

    CAS  PubMed  Google Scholar 

  104. Mezzetti, M. et al. Population attributable risk for breast cancer: diet, mutrition, and physical exercise. J. Natl Cancer Inst. 90, 389–394 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Coffey, D. S. Similarities of prostate and breast cancer: evolution, diet, and estrogens. Urol. 57, 31–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Sakr, W. A., Haas, G. P., Cassin, B. F., Pontes, J. E. & Crissman, J. D. The frequence of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J. Urol. 150, 379–385 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Dunne, D. W. & Cooke, A. A worm's eye view of the immune system: consequences for evolution of human autoimmune disease. Nature Rev. Immunol. 5, 420–426 (2005).

    Article  CAS  Google Scholar 

  108. Yazdanbakhsh, M., Kremsner, P. G. & van Ree, R. Allergy, parasites and the hygiene hypothesis. Science 296, 490–494 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Bach, J. F. Mechanisms of disease: the effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  110. Kolb, H. & Elliott, R. B. Increasing incidence of IDDM a consequence of improved hygiene? Diabetologia 37, 729–731 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Greaves, M. F. Aetiology of acute leukaemia. Lancet 349, 344–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Le Souëf, P. N., Goldblatt, J. & Lynch, N. R. Evolutionary adaptation of inflammatory immune responses in human beings. Lancet 356, 242–244 (2000).

    Article  PubMed  Google Scholar 

  113. Tsao, J. -L. et al. Genetic reconstruction of individual colorectal tumor histories. Proc. Natl Acad. Sci. USA 97, 1236–1241 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gatenby, R. A. & Vincent, T. L. An evolutionary model of carcinogenesis. Cancer Res. 63, 6212–6220 (2003).

    CAS  PubMed  Google Scholar 

  115. Michor, F., Iwasa, Y. & Nowak, M. A. Dynamics of cancer progression. Nature Rev. Cancer 4, 197–205 (2004).

    Article  CAS  Google Scholar 

  116. Crespi, B. & Summers, K. Evolutionary biology of cancer. Trends Ecol. Evol. 20, 545–552 (2005).

    Article  PubMed  Google Scholar 

  117. Nagy, J. D. Competition and natural selection in a mathematical model of cancer. Bull. Math. Biol. 66, 663–668 (2004).

    Article  PubMed  Google Scholar 

  118. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Singh, S. K., Clarke, I. D., Hide, T. & Dirks, P. B. Cancer stem cells in nervous sytem tumors. Oncogene 23, 7267–7273 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2006).

    Article  PubMed  CAS  Google Scholar 

  122. Partridge, L. & Gems, D. Beyond the evolutionary theory of ageing, from functional genomics to evo-gero. Trends Ecol. Evol. 21, 334–340 (2006).

    Article  PubMed  Google Scholar 

  123. Kirkwood, T. B. L. Understanding the odd science of ageing. Cell 120, 437–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Medawar, P. B. An unsolved problem in biology (H K Lewis, London, 1952).

    Google Scholar 

  125. Lahdenpera, M., Lummaa, V., Helle, S., Tremblay, M. & Russell, A. F. Fitness benefits of prolonged post-reproductive lifespans in women. Nature 428, 178–181 (2004).

    Article  PubMed  CAS  Google Scholar 

  126. Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  127. Balducci, L. & Ershler, W. B. Cancer and ageing: a nexus at several levels. Nature Rev. Cancer 5, 655–662 (2005).

    Article  CAS  Google Scholar 

  128. Doll, R. An epidemiological perspective of the biology of cancer. Cancer Res. 38, 3573–3583 (1978).

    CAS  PubMed  Google Scholar 

  129. DePinho, R. A. The age of cancer. Nature 408, 248–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Frank, S. A. Age-specific incidence of inherited versus sporadic cancers: a test of the multistage theory of carcinogenesis. Proc. Natl Acad. Sci. USA 102, 1071–1075 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Frank, S. A. Age-specific acceleration of cancer. Curr. Biol. 14, 242–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Peto, R., Roe, F. J. C., Lee, P. N., Levy, L. & Clack, J. Cancer and ageing in mice and men. Br. J. Cancer 32, 411–426 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Peto, J. Cancer epidemiology in the last century and the next decade. Nature 411, 390–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Campisi, J. Aging and cancer: the double-edged sword of replicative senescence. J. Am. Geriatr. Soc. 45, 482–488 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Dunn, G. P., Old, L. J. & Schreiber, R. D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Foulds, L. The natural history of cancer. J. Chronic Dis. 8, 2–37 (1958).

    Article  CAS  PubMed  Google Scholar 

  138. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Weinstein, B. S. & Ciszek, D. The reserve-capacity hypothesis: evolutionary origins and modern implications of the trade-off between tumor-suppression and tissue-repair. Exp. Gerontol. 37, 615–627 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Tyner, S. D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Campisi, J. Cancer and ageing: rival demons? Nature Rev. Cancer 3, 339–349 (2003).

    Article  CAS  Google Scholar 

  142. Beausejour, C. M. & Campisi, J. Balancing regeneration and cancer. Nature 443, 404–405 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Greaves, M. Cancer causation: the Darwinian downside of past success? Lancet Oncol 3, 244–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Poole, A. J. et al. Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314, 1467–1470 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Jordan, V. C. Chemoprevention of breast cancer with selective oestrogen-receptor modulators. Nature Rev. Cancer 7, 46–53 (2007).

    Article  CAS  Google Scholar 

  146. Roden, R. & Wu, T. -C. How will HPV vaccines affect cervical cancer? Nature Rev. Cancer 6, 753–763 (2006).

    Article  CAS  Google Scholar 

  147. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Greaves, M. Is telomerase activity in cancer due to selection of stem cells and differentiation arrest? Trends Genet. 12, 127–128 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Carmeliet, P. Angiogenesis in health and disease. Nature Med. 9, 653–660 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Folkman, J. Role of antigenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is supported by The Institute of Cancer Research, and thanks B. Deverson for help with manuscript preparation and R. Nesse for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Evolution and Medicine Network

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greaves, M. Darwinian medicine: a case for cancer. Nat Rev Cancer 7, 213–221 (2007). https://doi.org/10.1038/nrc2071

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2071

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing