Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Making a tumour's bed: glioblastoma stem cells and the vascular niche

Abstract

Parallel to the role that normal stem cells play in organogenesis, cancer stem cells are thought to be crucial for tumorigenesis. Understanding normal development might therefore lead to better treatments of cancer. We review recent data that stem cells of glioblastoma, a highly malignant brain tumour, seem to be dependent on cues from aberrant vascular niches that mimic the normal neural stem cell niche. These data have direct implications for cancer, highlighting the similarity between normal and malignant stem cells and identifying the tumour microenvironment as a target for new therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The normal and malignant neural stem cell niche.
Figure 2: The abc of targeting the glioma cancer stem cell niche.

Similar content being viewed by others

References

  1. Clarke, M. F. & Fuller, M. Stem cells and cancer: two faces of eve. Cell 124, 1111–1115 (2006).

    Article  CAS  Google Scholar 

  2. Clarke, M. F. et al. Cancer stem cells — perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 66, 9339–9344 (2006).

    Article  CAS  Google Scholar 

  3. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  Google Scholar 

  4. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. From the cover: prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988. (2003).

    Article  CAS  Google Scholar 

  5. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  Google Scholar 

  6. Taylor, M. D. et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8, 323–335. (2005).

    Article  CAS  Google Scholar 

  7. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401. (2004).

    Article  CAS  Google Scholar 

  8. Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173. (2006).

    Article  CAS  Google Scholar 

  9. Ligon, K. L. et al. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 53, 503–517 (2007).

    Article  CAS  Google Scholar 

  10. Jackson, E. L. et al. PDGFRα-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51, 187–199 (2006).

    Article  CAS  Google Scholar 

  11. Zhu, Y. et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8, 119–130 (2005).

    Article  CAS  Google Scholar 

  12. Kuo, C. T. et al. Postnatal deletion of numb/numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell 127, 1253–1264 (2006).

    Article  CAS  Google Scholar 

  13. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  Google Scholar 

  14. Moore, K. A. & Lemischka, I. R. Stem cells and their niches. Science 311, 1880–1885 (2006).

    Article  CAS  Google Scholar 

  15. Scheres, B. Stem-cell niches: nursery rhymes across kingdoms. Nature Rev. Mol. Cell Biol. 8, 345–354 (2007).

    Article  CAS  Google Scholar 

  16. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    Article  CAS  Google Scholar 

  17. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  18. Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740 (2004).

    Article  CAS  Google Scholar 

  19. Merkle, F. T., Tramontin, A. D., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc. Natl Acad. Sci. USA 101, 17528–17532 (2004).

    Article  CAS  Google Scholar 

  20. Louissaint, A. Jr., Rao, S., Leventhal, C. & Goldman, S. A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960. (2002).

    Article  CAS  Google Scholar 

  21. Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    Article  CAS  Google Scholar 

  22. Ramirez-Castillejo, C. et al. Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nature Neurosci. 9, 331–339 (2006).

    Article  CAS  Google Scholar 

  23. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  Google Scholar 

  24. Riquelme, P. A., Drapeau, E. & Doetsch, F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 23, 23 (2007).

    Google Scholar 

  25. Cleaver, O. & Melton, D. A. Endothelial signaling during development. Nature Med. 9, 661–668 (2003).

    Article  CAS  Google Scholar 

  26. Leventhal, C., Rafii, S., Rafii, D., Shahar, A. & Goldman, S. A. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol. Cell. Neurosci. 13, 450–464 (1999).

    Article  CAS  Google Scholar 

  27. Le Bras, B. et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nature Neurosci. 9, 340–348 (2006).

    Article  CAS  Google Scholar 

  28. Garcion, E., Halilagic, A., Faissner, A. & French-Constant, C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 131, 3423–3432 (2004).

    Article  CAS  Google Scholar 

  29. Sirko, S., von Holst, A., Wizenmann, A., Gotz, M. & Faissner, A. Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development 134, 2727–2738 (2007).

    Article  CAS  Google Scholar 

  30. Li, Q., Ford, M. C., Lavik, E. B. & Madri, J. A. Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J. Neurosci. Res. 84, 1656–1668 (2006).

    Article  CAS  Google Scholar 

  31. Kai, T. & Spradling, A. C. An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proc. Natl Acad. Sci. USA 100, 4633–4638 (2003).

    Article  CAS  Google Scholar 

  32. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    Article  CAS  Google Scholar 

  33. Bao, S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848 (2006).

    Article  CAS  Google Scholar 

  34. Folkins, C. et al. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 67, 3560–3564 (2007).

    Article  CAS  Google Scholar 

  35. Scherer, H. Cerebral astrocytomas and their derivatives. Am. J. Cancer 1, 159–198 (1940).

    Google Scholar 

  36. Leon, S. P., Folkerth, R. D. & Black, P. M. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77, 362–372 (1996).

    Article  CAS  Google Scholar 

  37. Vredenburgh, J. J. et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res. 13, 1253–1259 (2007).

    Article  CAS  Google Scholar 

  38. Walkley, C. R., Shea, J. M., Sims, N. A., Purton, L. E. & Orkin, S. H. Rb Regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129, 1081–1095 (2007).

    Article  CAS  Google Scholar 

  39. Piccirillo, S. G. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444, 761–765 (2006).

    Article  CAS  Google Scholar 

  40. Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83–95 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to those authors whose work we could not cite owing to space limitations. R.J.G. holds the Sydney Schlobohm Leadership Chair of Research from the Brain Tumour Society and is supported by grants from the US National Institutes of Health (R01CA129,541, P01CA96,832 and P30CA021,765), and the CERN Foundation and by the American Lebanese Syrian Associated Charities (ALSAC). J.N.R. is a Damon Runyon-Lilly Clinical Investigator and a Sidney Kimmel Cancer Foundation Scholar and is supported by grants from the US National Institutes of Health (NS047,409, NS054,276, and CA116,659), the Pediatric Brain Tumour Foundation of the United States, Accelerate Brain Cancer Cure, and the Childhood Brain Tumour Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

glioblastoma

FURTHER INFORMATION

Richard Gilbertson's webpage

Jeremy N. Rich's laboratory homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbertson, R., Rich, J. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7, 733–736 (2007). https://doi.org/10.1038/nrc2246

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing