Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

The Mouse Tumor Biology database

Abstract

The laboratory mouse has long been an important tool in the study of the biology and genetics of human cancer. With the advent of genetic engineering techniques, DNA microarray analyses, tissue arrays and other large-scale, high-throughput data generating methods, the amount of data available for mouse models of cancer is growing exponentially. Tools to integrate, locate and visualize these data are crucial to aid researchers in their investigations. The Mouse Tumor Biology database (http://tumor.informatics.jax.org) seeks to address that need.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Publications for mouse models of cancer.
Figure 2: The Tumor Frequency Grid.
Figure 3: Pathology Image Detail page.
Figure 4: Pathology Submission Tool.
Figure 5: The Advanced Search Form.

Similar content being viewed by others

References

  1. Paigen, K. One hundred years of mouse genetics: an intellectual history. I. The classical period (1902–1980). Genetics 163, 1–7 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tyzzer, E. E. A series of spontaneous tumors in mice with observations on the influence of heredity on the frequency of their occurrence. J. Med. Res. 21, 479–518 (1909).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lathrop, A. E. C. & Loeb, L. Further investigations on the origin of tumors in mice. I. Tumor incidence and tumor age in various strains of mice. J. Exp. Med. 22, 646–673 (1915).

    Article  CAS  Google Scholar 

  4. Lifsted, T. et al. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int. J. Cancer 77, 640–644 (1998).

    Article  CAS  Google Scholar 

  5. Demant, P. Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nature Rev. Genet. 4, 721–734 (2003).

    Article  CAS  Google Scholar 

  6. Resor, L., Bowen, T. J. & Wynshaw-Boris, A. Unraveling human cancer in the mouse: recent refinements to modeling and analysis. Hum. Mol. Genet. 10, 669–675 (2001).

    Article  CAS  Google Scholar 

  7. Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models. Nature Rev. Cancer 7, 645–658 (2007).

    Article  CAS  Google Scholar 

  8. Holland, E. C., Hively, W. P., DePinho, R. A. & Varmus, H. E. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev. 12, 3675–3685 (1998).

    Article  CAS  Google Scholar 

  9. Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).

    Article  CAS  Google Scholar 

  10. Jonkers, J. & Berns, A. Conditional mouse models of sporadic cancer. Nature Rev. Cancer 2, 251–265 (2002).

    Article  CAS  Google Scholar 

  11. Hahn, W. C. & Weinberg, R. A. Modelling the molecular circuitry of cancer. Nature Rev. Cancer 2, 331–341 (2002).

    Article  CAS  Google Scholar 

  12. Calbo, J., Meuwissen, R., van Montfort, E., van Tellingen, O. & Berns, A. Genotype–phenotype relationships in a mouse model for human small-cell lung cancer. Cold Spring Harb. Symp. Quant. Biol. 70, 225–232 (2005).

    Article  CAS  Google Scholar 

  13. Bult, C. J., Krupke, D. M. & Eppig, J. T. Electronic access to mouse tumor data: the Mouse Tumor Biology Database (MTB) project. Nucleic Acids Res. 27, 99–105 (1999).

    Article  CAS  Google Scholar 

  14. Näf, D., Krupke, D. M., Sundberg, J. P., Eppig, J. T. & Bult, C. J. The Mouse Tumor Biology Database: a public resource for cancer genetics and pathology of the mouse. Cancer Res. 62, 1235–1240 (2002).

    PubMed  Google Scholar 

  15. Begley, D. A. et al. Mouse Tumor Biology Database (MTB): status update and future directions. Nucleic Acids Res. 35, D638–D642 (2007).

    Article  CAS  Google Scholar 

  16. Eppig, J. T. in The Mouse in Biomedical Research: History, Wild Mice, and Genetics (Fox, J. G. et al.(eds)) 79–98 (Elsevier, Inc., Amsterdam, 2007).

    Book  Google Scholar 

  17. Balmain, A. Cancer as a complex genetic trait. Tumor susceptibility in humans and mouse models. Cell 108, 145–152 (2002).

    Article  CAS  Google Scholar 

  18. Dragani, T. A. 10 years of mouse cancer modifier loci: human relevance. Cancer Res. 63, 3011–3018 (2003).

    CAS  PubMed  Google Scholar 

  19. Ewart-Toland, A. & Balmain, A. The genetics of cancer susceptibility: from mouse to man. Toxicol. Pathol. 32 (Suppl. 1), 26–30 (2004).

    Article  CAS  Google Scholar 

  20. Schröck, E. & Padilla-Nash, H. Spectral karyotyping and multicolor fluorescence in situ hybridization revail new tumor-specific chromosomal aberrations. Semin. Hematol. 37, 334–347 (2000).

    Article  Google Scholar 

  21. Kearney, L. Multiplex-FISH (M-FISH): technique, developments and applications. Cytogenet. Genome Res. 114, 189–198 (2006).

    Article  CAS  Google Scholar 

  22. Bayani, J. M. & Squire, J. A. Applications of SKY in cancer cytogenetics. Cancer Invest. 20, 373–386 (2002).

    Article  Google Scholar 

  23. Hodgson, G. et al. Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas. Nature Genet. 29, 459–464 (2001).

    Article  CAS  Google Scholar 

  24. Hackett, C. S. et al. Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in human tumors. Cancer Res. 63, 5266–5273 (2003).

    CAS  PubMed  Google Scholar 

  25. O'Hagan, R. C. et al. Array comparative genome hybridization for tumor classification and gene discovery in mouse models of malignant melanoma. Cancer Res. 63, 5352–5256 (2003).

    CAS  PubMed  Google Scholar 

  26. Desai, K. V., Kavanaugh, C. J., Calvo, A. & Green, J. E. Chipping away at breast cancer: insights from Microarray studies of human and mouse mammary cancer. Endocr. Relat. Cancer 9, 207–220 (2002).

    Article  CAS  Google Scholar 

  27. Malarkey, D. E. et al. Microarray data analysis of mouse neoplasia. Toxicol. Pathol. 33, 127–135 (2005).

    Article  CAS  Google Scholar 

  28. Strivens, M. & Eppig, J. T. Visualizing the laboratory mouse: capturing phenotypic information. Genetica 122, 89–97 (2004).

    Article  CAS  Google Scholar 

  29. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  30. Hayamizu, T. F., Mangan, M., Corradi, J. P., Kadin, J. A. & Ringwald, M. The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data. Genome Biol. 6, R29 (2005).

    Article  Google Scholar 

  31. Smith, C. L., Goldsmith, C. A. & Eppig, J. T. The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol. 6, R7 (2005).

    Article  Google Scholar 

  32. Schofield, P. N. et al. Pathbase: a database of mutant mouse pathology. Nucleic Acids Res. 1, D512–D515 (2004).

    Article  Google Scholar 

  33. Nature editorial [no author listed]. Making data dreams come true. Nature 428, 239 (2004).

  34. caBIG Strategic Planning Workspace. The Cancer Biomedical Informatics Grid (caBIG): infrastructure and applications for a worldwide research community. Medinfo. 12 (Pt 1), 330–334 (2007).

  35. Xu, F. et al. Mouse models of human cancer web-based resources. AMIA Annu. Symp. Proc. 1056 (2003).

Download references

Acknowledgements

For critical reading of the manuscript we thank K. Mills and B. Tennent of the The Jackson Laboratory, Bar Harbor, USA. For sample images in FIG. 4 we thank J. Ward of the National Cancer Institute. The Mouse Tumor Biology Database is supported by grant CA089713 from the National Cancer Institute. Images generated from The Jackson Aging Center projects are supported by a grant from the Ellison Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debra M. Krupke.

Related links

Related links

FURTHER INFORMATION

Biology of the Mammary Gland Web Site

Cancer Biomedical Informatics Grid

Cancer Genome Anatomy Project

Cancer Models

Cell Type Ontology

Festing's Listing of Inbred Strains of Mice

International Mouse Strain Resource

The Jackson Laboratory

JAX® Mice Web Site

MMHCC

MMHCC Mouse Repository

Mouse Genome Informatics

Mouse Nomenclature Home Page

Mouse Phenome Database

Mouse Tumor Biology database

PathBase

Tumor Frequency Grid movie

UC-Davis Center for Comparative Medicine Image Archive

Zoomify

Zoomify movie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krupke, D., Begley, D., Sundberg, J. et al. The Mouse Tumor Biology database. Nat Rev Cancer 8, 459–465 (2008). https://doi.org/10.1038/nrc2390

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2390

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing