Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Tailoring to RB: tumour suppressor status and therapeutic response

Abstract

The retinoblastoma tumour suppressor (RB) is a crucial regulator of cell-cycle progression that is invoked in response to a myriad of anti-mitogenic signals. It has been hypothesized that perturbations of the RB pathway confer a synonymous proliferative advantage to tumour cells; however, recent findings demonstrate context-specific outcomes associated with such lesions. Particularly, loss of RB function is associated with differential response to wide-ranging therapeutic agents. Thus, the status of this tumour suppressor may be particularly informative in directing treatment regimens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of RB in cell cycle control.
Figure 2: Influence of RB loss: context dependence.
Figure 3: Mutiple markers for RB dysfunction.
Figure 4: Exploiting RB deficiency therapeutically.

Similar content being viewed by others

References

  1. Cobrinik, D. Pocket proteins and cell cycle control. Oncogene 24, 2796–2809 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Classon, M. & Harlow, E. The retinoblastoma tumour suppressor in development and cancer. Nature Rev. Cancer 2, 910–917 (2002).

    Article  CAS  Google Scholar 

  3. Liu, H., Dibling, B., Spike, B., Dirlam, A. & Macleod, K. New roles for the RB tumor suppressor protein. Curr. Opin. Genet. Dev. 14, 55–64 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. Dimova, D. K. & Dyson, N. J. The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810–2826 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Nevins, J. R. The Rb/E2F pathway and cancer. Hum. Mol. Genet. 10, 699–703 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Blais, A. & Dynlacht, B. D. Hitting their targets: an emerging picture of E2F and cell cycle control. Curr. Opin. Genet. Dev. 14, 527–532 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Blais, A. & Dynlacht, B. D. E2F-associated chromatin modifiers and cell cycle control. Curr. Opin. Cell Biol. 19, 658–662 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Markey, M. P. et al. Unbiased analysis of RB-mediated transcriptional repression identifies novel targets and distinctions from E2F action. Cancer Res. 62, 6587–6597 (2002).

    CAS  PubMed  Google Scholar 

  9. Markey, M. P. et al. Loss of the retinoblastoma tumor suppressor: differential action on transcriptional programs related to cell cycle control and immune function. Oncogene 26, 6307–6318 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Black, E. P. et al. Distinct gene expression phenotypes of cells lacking Rb and Rb family members. Cancer Res. 63, 3716–3723 (2003).

    CAS  PubMed  Google Scholar 

  11. Vernell, R., Helin, K. & Muller, H. Identification of target genes of the p16INK4A–pRB–E2F pathway. J. Biol. Chem. 278, 46124–46137 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Mittnacht, S. Control of pRB phosphorylation. Curr. Opin. Genet. Dev. 8, 21–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Vietri, M., Bianchi, M., Ludlow, J. W., Mittnacht, S. & Villa-Moruzzi, E. Direct interaction between the catalytic subunit of Protein Phosphatase 1 and pRb. Cancer Cell Int. 6, 3 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Broceno, C., Wilkie, S. & Mittnacht, S. RB activation defect in tumor cell lines. Proc. Natl Acad. Sci. USA 99, 14200–14205 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, J. Y., Knudsen, E. S. & Welch, P. J. The retinoblastoma tumor suppressor protein. Adv. Cancer Res. 64, 25–85 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Mayhew, C. N. et al. Discrete signaling pathways participate in RB-dependent responses to chemotherapeutic agents. Oncogene 23, 4107–4120 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Cavenee, W. K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–784 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Cavenee, W. K. et al. Genetic origin of mutations predisposing to retinoblastoma. Science 228, 501–503 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Diehl, J. A. Cycling to cancer with cyclin D1. Cancer Biol. Ther. 1, 226–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Dyson, N., Howley, P. M., Munger, K. & Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Sherr, C. J. Cell cycle control and cancer. Harvey Lect. 96, 73–92 (2000).

    PubMed  Google Scholar 

  22. Iaquinta, P. J. & Lees, J. A. Life and death decisions by the E2F transcription factors. Curr. Opin. Cell Biol. 19, 649–657 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393–2409 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Morris, E. J. & Dyson, N. J. Retinoblastoma protein partners. Adv. Cancer Res. 82, 1–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Stevaux, O. & Dyson, N. J. A revised picture of the E2F transcriptional network and RB function. Curr. Opin. Cell Biol. 14, 684–691 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Harbour, J. W., Luo, R. X., Dei Santi, A., Postigo, A. A. & Dean, D. C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859–869 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Knudsen, E. S. & Wang, J. Y. Dual mechanisms for the inhibition of E2F binding to RB by cyclin-dependent kinase-mediated RB phosphorylation. Mol. Cell. Biol. 17, 5771–5783 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hinds, P. W. et al. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70, 993–1006 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Knudsen, K. E., Diehl, J. A., Haiman, C. A. & Knudsen, E. S. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 25, 1620–1628 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Lundberg, A. S. & Weinberg, R. A. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol. Cell. Biol. 18, 753–761 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deeb, K. K. et al. Identification of an integrated SV40 T/t-antigen cancer signature in aggressive human breast, prostate, and lung carcinomas with poor prognosis. Cancer Res. 67, 8065–8080 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Ishida, S. et al. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol. Cell. Biol. 21, 4684–4699 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren, B. et al. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev. 16, 245–256 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tamrakar, S., Rubin, E. & Ludlow, J. W. Role of pRB dephosphorylation in cell cycle regulation. Front. Biosci. 5, D121–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Knudsen, K. E. et al. RB-dependent S-phase response to DNA damage. Mol. Cell. Biol. 20, 7751–7763 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Avni, D. et al. Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Mol. Cell 12, 735–746 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Dou, Q. P., An, B. & Will, P. L. Induction of a retinoblastoma phosphatase activity by anticancer drugs accompanies p53-independent G1 arrest and apoptosis. Proc. Natl Acad. Sci. USA 92, 9019–9023 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arnold, A. & Papanikolaou, A. Cyclin D1 in breast cancer pathogenesis. J. Clin. Oncol. 23, 4215–4224 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Benzeno, S. et al. Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene 25, 6291–6303 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Palmero, I. & Peters, G. Perturbation of cell cycle regulators in human cancer. Cancer Surv. 27, 351–367 (1996).

    CAS  PubMed  Google Scholar 

  41. Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer 1, 222–231 (2001).

    Article  CAS  Google Scholar 

  42. Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Kamb, A. et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, Y. et al. Somatic cell type specific gene transfer reveals a tumor-promoting function for p21(Waf1/Cip1). EMBO J. 26, 4683–4693 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Wolfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269, 1281–1284 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Malumbres, M. et al. Driving the cell cycle to cancer. Adv. Exp. Med. Biol. 532, 1–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Ortega, S., Malumbres, M. & Barbacid, M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim. Biophys. Acta 1602, 73–87 (2002).

    CAS  PubMed  Google Scholar 

  53. Horowitz, J. M. et al. Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. Proc. Natl Acad. Sci. USA 87, 2775–2779 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaye, F. J. RB and cyclin dependent kinase pathways: defining a distinction between RB and p16 loss in lung cancer. Oncogene 21, 6908–6914 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Munger, K. The role of human papillomaviruses in human cancers. Front. Biosci. 7, d641–649 (2002).

    Article  PubMed  Google Scholar 

  56. Munger, K. et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 20, 7888–7898 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Lukas, J. et al. DNA tumor virus oncoproteins and retinoblastoma gene mutations share the ability to relieve the cell's requirement for cyclin D1 function in G1. J. Cell Biol. 125, 625–638 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Lukas, J., Bartkova, J., Rohde, M., Strauss, M. & Bartek, J. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol. Cell. Biol. 15, 2600–2611 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yuan, J. et al. Expression of p16 and lack of pRB in primary small cell lung cancer. J. Pathol. 189, 358–362 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Otterson, G. A., Kratzke, R. A., Coxon, A., Kim, Y. W. & Kaye, F. J. Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene 9, 3375–3378 (1994).

    CAS  PubMed  Google Scholar 

  61. Herrera, R. E. et al. Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts. Mol. Cell. Biol. 16, 2402–2407 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mayhew, C. N., Bosco, E. E., Solomon, D. A., Knudsen, E. S. & Angus, S. P. Analysis of RB action in DNA damage checkpoint response. Methods Mol. Biol. 281, 3–16 (2004).

    CAS  PubMed  Google Scholar 

  63. Novitch, B. G., Spicer, D. B., Kim, P. S., Cheung, W. L. & Lassar, A. B. pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr. Biol. 9, 449–459 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Knudsen, E. S., Sexton, C. R. & Mayhew, C. N. Role of the retinoblastoma tumor suppressor in the maintenance of genome integrity. Curr. Mol. Med. 6, 749–757 (2006).

    CAS  PubMed  Google Scholar 

  65. Hansen, J. B. et al. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc. Natl Acad. Sci. USA 101, 4112–4117 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mayhew, C. N. et al. Liver-specific pRB loss results in ectopic cell cycle entry and aberrant ploidy. Cancer Res. 65, 4568–4577 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Tonks, I. D. et al. Melanocytes in conditional Rb−/− mice are normal in vivo but exhibit proliferation and pigmentation defects in vitro. Pigment Cell Res. 18, 252–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Flesken-Nikitin, A., Choi, K. C., Eng, J. P., Shmidt, E. N. & Nikitin, A. Y. Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res. 63, 3459–3463 (2003).

    CAS  PubMed  Google Scholar 

  69. Balsitis, S. et al. Examination of the pRb-dependent and pRb-independent functions of E7 in vivo. J. Virol. 79, 11392–11402 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wikenheiser-Brokamp, K. A. Rb family proteins differentially regulate distinct cell lineages during epithelial development. Development 131, 4299–4310 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Wikenheiser-Brokamp, K. A. Retinoblastoma family proteins: insights gained through genetic manipulation of mice. Cell. Mol. Life Sci. 63, 767–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Kaye, F. J. & Harbour, J. W. For whom the bell tolls: susceptibility to common adult cancers in retinoblastoma survivors. J. Natl Cancer Inst. 96, 342–343 (2004).

    Article  PubMed  Google Scholar 

  73. Kleinerman, R. A. et al. Risk of soft tissue sarcomas by individual subtype in survivors of hereditary retinoblastoma. J. Natl Cancer Inst. 99, 24–31 (2007).

    Article  PubMed  Google Scholar 

  74. Yamasaki, L. et al. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1+/− mice. Nature Genet. 18, 360–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Gil, J. & Peters, G. Regulation of the INK4b–ARF–INK4a tumour suppressor locus: all for one or one for all. Nature Rev. Mol. Cell. Biol. 7, 667–677 (2006).

    Article  CAS  Google Scholar 

  76. Agami, R. & Bernards, R. Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 102, 55–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Gladden, A. B. & Diehl, J. A. Location, location, location: the role of cyclin D1 nuclear localization in cancer. J. Cell Biochem. 96, 906–913 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Comstock, C. E., Revelo, M. P., Buncher, C. R. & Knudsen, K. E. Impact of differential cyclin D1 expression and localisation in prostate cancer. Br. J. Cancer 96, 970–979 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peeper, D. S. et al. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 386, 177–181 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Herrera, R. E., Makela, T. P. & Weinberg, R. A. TGF beta-induced growth inhibition in primary fibroblasts requires the retinoblastoma protein. Mol. Biol. Cell 7, 1335–1342 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Harrington, E. A., Bruce, J. L., Harlow, E. & Dyson, N. pRB plays an essential role in cell cycle arrest induced by DNA damage. Proc. Natl Acad. Sci. USA 95, 11945–11950 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nahle, Z. et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nature Cell Biol. 4, 859–864 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Almasan, A. et al. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc. Natl Acad. Sci. USA 92, 5436–5440 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, D. et al. Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell 5, 539–551 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Maandag, E. C. et al. Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J. 13, 4260–4268 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. DeGregori, J. & Johnson, D. G. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr. Mol. Med. 6, 739–748 (2006).

    CAS  PubMed  Google Scholar 

  87. Chau, B. N. & Wang, J. Y. Coordinated regulation of life and death by RB. Nature Rev. Cancer 3, 130–138 (2003).

    Article  CAS  Google Scholar 

  88. Bosco, E. E. et al. RB signaling prevents replication-dependent DNA double-strand breaks following genotoxic insult. Nucleic Acids Res. 32, 25–34 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Qin, X. Q., Livingston, D. M., Kaelin, W. G. Jr & Adams, P. D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91, 10918–10922 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Johnson, D. G. & Degregori, J. Putting the oncogenic and tumor suppressive activities of E2F into context. Curr. Mol. Med. 6, 731–738 (2006).

    CAS  PubMed  Google Scholar 

  91. Chau, B. N., Pan, C. W. & Wang, J. Y. Separation of anti-proliferation and anti-apoptotic functions of retinoblastoma protein through targeted mutations of its A/B domain. PLoS ONE 1, e82 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Rogoff, H. A. & Kowalik, T. F. Life, death and E2F: linking proliferation control and DNA damage signaling via E2F1. Cell Cycle 3, 845–846 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Ruiz, S., Santos, M. & Paramio, J. M. Is the loss of pRb essential for the mouse skin carcinogenesis? Cell Cycle 5, 625–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Tsai, K. Y. et al. ARF mutation accelerates pituitary tumor development in Rb+/− mice. Proc. Natl Acad. Sci. USA 99, 16865–16870 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tsai, K. Y., MacPherson, D., Rubinson, D. A., Crowley, D. & Jacks, T. ARF is not required for apoptosis in Rb mutant mouse embryos. Curr. Biol. 12, 159–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. MacPherson, D. et al. Cell type-specific effects of Rb deletion in the murine retina. Genes Dev. 18, 1681–1694 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Marino, S., Hoogervoorst, D., Brandner, S. & Berns, A. Rb and p107 are required for normal cerebellar development and granule cell survival but not for Purkinje cell persistence. Development 130, 3359–3368 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Serrano, M. & Blasco, M. A. Putting the stress on senescence. Curr. Opin. Cell Biol. 13, 748–753 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Wu, C. H. et al. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc. Natl Acad. Sci. USA 104, 13028–13033 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sage, J., Miller, A. L., Perez-Mancera, P. A., Wysocki, J. M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Bieche, I. & Lidereau, R. Loss of heterozygosity at 13q14 correlates with RB1 gene underexpression in human breast cancer. Mol. Carcinog. 29, 151–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Oliveira, A. M., Ross, J. S. & Fletcher, J. A. Tumor suppressor genes in breast cancer: the gatekeepers and the caretakers. Am. J. Clin. Pathol. 124 (Suppl.), S16–S28 (2005).

    CAS  PubMed  Google Scholar 

  106. Bosco, E. E. & Knudsen, E. S. RB in breast cancer: at the crossroads of tumorigenesis and treatment. Cell Cycle 6, 667–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Ceccarelli, C. et al. Retinoblastoma (RB1) gene product expression in breast carcinoma. Correlation with Ki-67 growth fraction and biopathological profile. J. Clin. Pathol. 51, 818–824 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pietilainen, T. et al. Expression of retinoblastoma gene protein (Rb) in breast cancer as related to established prognostic factors and survival. Eur. J. Cancer 31A, 329–333 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Mack, P. C. et al. Increased RB1 abnormalities in human primary prostate cancer following combined androgen blockade. Prostate 34, 145–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Phillips, S. M. et al. Loss of the retinoblastoma susceptibility gene (RB1) is a frequent and early event in prostatic tumorigenesis. Br. J. Cancer 70, 1252–1257 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ittmann, M. M. & Wieczorek, R. Alterations of the retinoblastoma gene in clinically localized, stage B prostate adenocarcinomas. Hum. Pathol. 27, 28–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Sutherland, R. L. & Musgrove, E. A. Cyclins and breast cancer. J. Mammary Gland Biol. Neoplasia 9, 95–104 (2004).

    Article  PubMed  Google Scholar 

  113. Watts, C. K. et al. Antiestrogen inhibition of cell cycle progression in breast cancer cells in associated with inhibition of cyclin-dependent kinase activity and decreased retinoblastoma protein phosphorylation. Mol. Endocrinol. 9, 1804–1813 (1995).

    CAS  PubMed  Google Scholar 

  114. Foster, J. S., Henley, D. C., Bukovsky, A., Seth, P. & Wimalasena, J. Multifaceted regulation of cell cycle progression by estrogen: regulation of Cdk inhibitors and Cdc25A independent of cyclin D1–Cdk4 function. Mol. Cell. Biol. 21, 794–810 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Craig, C. et al. Effects of adenovirus-mediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells. Oncogene 16, 265–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Watts, C. K., Sweeney, K. J., Warlters, A., Musgrove, E. A. & Sutherland, R. L. Antiestrogen regulation of cell cycle progression and cyclin D1 gene expression in MCF-7 human breast cancer cells. Breast Cancer Res. Treat. 31, 95–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Hui, R. et al. Constitutive overexpression of cyclin D1 but not cyclin E confers acute resistance to antiestrogens in T-47D breast cancer cells. Cancer Res. 62, 6916–6923 (2002).

    CAS  PubMed  Google Scholar 

  118. Bosco, E. E. et al. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J. Clin. Invest. 117, 218–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Varma, H. & Conrad, S. E. Reversal of an antiestrogen-mediated cell cycle arrest of MCF-7 cells by viral tumor antigens requires the retinoblastoma protein-binding domain. Oncogene 19, 4746–4753 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Linke, S. P., Bremer, T. M., Herold, C. D., Sauter, G. & Diamond, C. A multimarker model to predict outcome in tamoxifen-treated breast cancer patients. Clin. Cancer Res. 12, 1175–1183 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Michalides, R. et al. Cyclin A is a prognostic indicator in early stage breast cancer with and without tamoxifen treatment. Br. J. Cancer 86, 402–408 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Han, S. et al. Cyclin D1 expression and patient outcome after tamoxifen therapy in estrogen receptor positive metastatic breast cancer. Oncol. Rep. 10, 141–144 (2003).

    CAS  PubMed  Google Scholar 

  123. Stendahl, M. et al. Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal breast cancer patients. Br. J. Cancer 90, 1942–1948 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rudas, M. et al. Cyclin D1 expression in breast cancer patients receiving adjuvant tamoxifen-based therapy. Clin. Cancer Res. 14, 1767–1774 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Barnes, D. M. & Gillett, C. E. Cyclin D1 in breast cancer. Breast Cancer Res. Treat. 52, 1–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Gillett, C. et al. Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res. 54, 1812–1817 (1994).

    CAS  PubMed  Google Scholar 

  127. Gillett, C. et al. Cyclin D1 and prognosis in human breast cancer. Int. J. Cancer 69, 92–99 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Hui, R. et al. INK4a gene expression and methylation in primary breast cancer: overexpression of p16INK4a messenger RNA is a marker of poor prognosis. Clin. Cancer Res. 6, 2777–2787 (2000).

    CAS  PubMed  Google Scholar 

  129. Dublin, E. A. et al. Retinoblastoma and p16 proteins in mammary carcinoma: their relationship to cyclin D1 and histopathological parameters. Int. J. Cancer 79, 71–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Nielsen, N. H., Loden, M., Cajander, J., Emdin, S. O. & Landberg, G. G1–S transition defects occur in most breast cancers and predict outcome. Breast Cancer Res. Treat. 56, 105–112 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Kroger, N. et al. Prognostic and predictive effects of immunohistochemical factors in high-risk primary breast cancer patients. Clin. Cancer Res. 12, 159–168 (2006).

    Article  PubMed  CAS  Google Scholar 

  132. Derenzini, M. et al. Loss of retinoblastoma tumor suppressor protein makes human breast cancer cells more sensitive to antimetabolite exposure. Clin. Cancer Res. 14, 2199–2209 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Anderson, J. J. et al. Retinoblastoma protein in human breast carcinoma: immunohistochemical study using a new monoclonal antibody effective on routinely processed tissues. J. Pathol. 180, 65–70 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Balk, S. P. & Knudsen, K. E. AR, the cell cycle, and prostate cancer. Nucl. Recept. Signal. 6, e001 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Sowery, R. D., So, A. I. & Gleave, M. E. Therapeutic options in advanced prostate cancer: present and future. Curr. Urol. Rep. 8, 53–59 (2007).

    Article  PubMed  Google Scholar 

  136. Knudsen, K. E., Arden, K. C. & Cavenee, W. K. Multiple G1 regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells. J. Biol. Chem. 273, 20213–20222 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Fribourg, A. F., Knudsen, K. E., Strobeck, M. W., Lindhorst, C. M. & Knudsen, E. S. Differential requirements for ras and the retinoblastoma tumor suppressor protein in the androgen dependence of prostatic adenocarcinoma cells. Cell Growth Differ. 11, 361–372 (2000).

    CAS  PubMed  Google Scholar 

  138. Xu, Y., Chen, S. Y., Ross, K. N. & Balk, S. P. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. 66, 7783–7792 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Knudsen, K. E., Cavenee, W. K. & Arden, K. C. D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res. 59, 2297–2301 (1999).

    CAS  PubMed  Google Scholar 

  140. Petre, C. E., Wetherill, Y. B., Danielsen, M. & Knudsen, K. E. Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity. J. Biol. Chem. 277, 2207–2215 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Knudsen, K. E. The cyclin D1b splice variant: an old oncogene learns new tricks. Cell Div. 1, 15 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Reutens, A. T. et al. Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner. Mol. Endocrinol. 15, 797–811 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Sharma, A. et al. Retinoblastoma tumor suppressor status is a critical determinant of therapeutic response in prostate cancer cells. Cancer Res. 67, 6192–6203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jarrard, D. F. et al. Alterations in the p16/pRb cell cycle checkpoint occur commonly in primary and metastatic human prostate cancer. Cancer Lett. 185, 191–199 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Gaddipati, J. P. et al. Mutations of the p16 gene product are rare in prostate cancer. Prostate 30, 188–194 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Chakravarti, A. et al. Prognostic value of p16 in locally advanced prostate cancer: a study based on Radiation Therapy Oncology Group Protocol 9202. J. Clin. Oncol. 25, 3082–3089 (2007).

    Article  PubMed  Google Scholar 

  147. Kallakury, B. V. et al. The prognostic significance of p34cdc2 and cyclin D1 protein expression in prostate adenocarcinoma. Cancer 80, 753–763 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Aaltomaa, S. et al. Expression of Ki-67, cyclin D1 and apoptosis markers correlated with survival in prostate cancer patients treated by radical prostatectomy. Anticancer Res. 26, 4873–4878 (2006).

    CAS  PubMed  Google Scholar 

  149. Drobnjak, M., Osman, I., Scher, H. I., Fazzari, M. & Cordon-Cardo, C. Overexpression of cyclin D1 is associated with metastatic prostate cancer to bone. Clin. Cancer Res. 6, 1891–1895 (2000).

    CAS  PubMed  Google Scholar 

  150. Gumbiner, L. M. et al. Overexpression of cyclin D1 is rare in human prostate carcinoma. Prostate 38, 40–45 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Zagorski, W. A., Knudsen, E. S. & Reed, M. F. Retinoblastoma deficiency increases chemosensitivity in lung cancer. Cancer Res. 67, 8264–8273 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Pollack, A. et al. Retinoblastoma protein expression and radiation response in muscle-invasive bladder cancer. Int. J. Radiat. Oncol. Biol. Phys. 39, 687–695 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Agerbaek, M., Alsner, J., Marcussen, N., Lundbeck, F. & von der Maase, H. Retinoblastoma protein expression is an independent predictor of both radiation response and survival in muscle-invasive bladder cancer. Br. J. Cancer 89, 298–304 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Simon, G. R. & Turrisi, A. Management of small cell lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132, 324S–339S (2007).

    Article  CAS  PubMed  Google Scholar 

  155. D'Abaco, G. M., Hooper, S., Paterson, H. & Marshall, C. J. Loss of Rb overrides the requirement for ERK activity for cell proliferation. J. Cell Sci. 115, 4607–4616 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Mack, P. C. et al. RB status as a determinant of response to UCN-01 in non-small cell lung carcinoma. Clin. Cancer Res. 5, 2596–2604 (1999).

    CAS  PubMed  Google Scholar 

  157. McGahren-Murray, M., Terry, N. H. & Keyomarsi, K. The differential staurosporine-mediated G1 arrest in normal versus tumor cells is dependent on the retinoblastoma protein. Cancer Res. 66, 9744–9753 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Chen, X., Lowe, M. & Keyomarsi, K. UCN-01-mediated G1 arrest in normal but not tumor breast cells is pRb-dependent and p53-independent. Oncogene 18, 5691–5702 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Fry, D. W. et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther. 3, 1427–1438 (2004).

    CAS  PubMed  Google Scholar 

  160. Toogood, P. L. et al. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J. Med. Chem. 48, 2388–2406 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Gallie, B. L. Predictive testing for retinoblastoma comes of age. Am. J. Hum. Genet. 61, 279–281 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liebisch, P. & Dohner, H. Cytogenetics and molecular cytogenetics in multiple myeloma. Eur. J. Cancer 42, 1520–1529 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Haddad, R. I. et al. A phase II clinical and pharmacodynamic study of E7070 in patients with metastatic, recurrent, or refractory squamous cell carcinoma of the head and neck: modulation of retinoblastoma protein phosphorylation by a novel chloroindolyl sulfonamide cell cycle inhibitor. Clin. Cancer Res. 10, 4680–4687 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Tan, A. R. et al. Phase I trial of the cyclin-dependent kinase inhibitor flavopiridol in combination with docetaxel in patients with metastatic breast cancer. Clin. Cancer Res. 10, 5038–5047 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Shan, B., Chang, C. Y., Jones, D. & Lee, W. H. The transcription factor E2F-1 mediates the autoregulation of RB gene expression. Mol. Cell. Biol. 14, 299–309 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Montanaro, L. et al. Controversial relationship between the expression of the RB pathway components and RB protein phosphorylation in human breast cancer. Histol. Histopathol. 22, 769–775 (2007).

    CAS  PubMed  Google Scholar 

  167. Derenzini, M. et al. Relationship between the RB1 mRNA level and the expression of phosphorylated RB protein in human breast cancers: their relevance in cell proliferation activity and patient clinical outcome. Histol. Histopathol. 22, 505–513 (2007).

    CAS  PubMed  Google Scholar 

  168. Gauthier, M. L. et al. Abrogated response to cellular stress identifies DCIS associated with subsequent tumor events and defines basal-like breast tumors. Cancer Cell 12, 479–491 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lukas, J. et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375, 503–506 (1995).

    Article  CAS  PubMed  Google Scholar 

  170. Medema, R. H., Herrera, R. E., Lam, F. & Weinberg, R. A. Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc. Natl Acad. Sci. USA 92, 6289–6293 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang, Z., Rosen, D. G., Yao, J. L., Huang, J. & Liu, J. Expression of p14ARF, p15INK4b, p16INK4a, and DCR2 increases during prostate cancer progression. Mod. Pathol. 19, 1339–1343 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Lambert, A. P., Anschau, F. & Schmitt, V. M. p16INK4A expression in cervical premalignant and malignant lesions. Exp. Mol. Pathol. 80, 192–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Andersson, S. et al. Expression of E6/E7 mRNA from 'high risk' human papillomavirus in relation to CIN grade, viral load and p16INK4a. Int. J. Oncol. 29, 705–711 (2006).

    CAS  PubMed  Google Scholar 

  174. Mayhew, C. N. et al. RB loss abrogates cell cycle control and genome integrity to promote liver tumorigenesis. Gastroenterology 133, 976–984 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nature Genet. 38, 1043–1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Desmedt, C. & Sotiriou, C. Proliferation: the most prominent predictor of clinical outcome in breast cancer. Cell Cycle 5, 2198–2202 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Sotiriou, C. et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J. Natl Cancer Inst. 98, 262–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Perreard, L. et al. Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res. 8, R23 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Naderi, A. et al. A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene 26, 1507–1516 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Sparano, J. A. & Paik, S. Development of the 21-gene assay and its application in clinical practice and clinical trials. J. Clin. Oncol. 26, 721–728 (2008).

    Article  PubMed  Google Scholar 

  181. Paik, S. Development and clinical utility of a 21-gene recurrence score prognostic assay in patients with early breast cancer treated with tamoxifen. Oncologist 12, 631–635 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Paik, S. et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3726–3734 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Loi, S. et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J. Clin. Oncol. 25, 1239–1246 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Ignatiadis, M. & Desmedt, C. Predicting risk of breast cancer recurrence using gene-expression profiling. Pharmacogenomics 8, 101–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Sotiriou, C. & Desmedt, C. Gene expression profiling in breast cancer. Ann. Oncol. 17 (Suppl. 10), x259–x262 (2006).

    Article  PubMed  Google Scholar 

  187. Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003).

    Article  CAS  PubMed  Google Scholar 

  188. Kaelin, W. G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nature Rev. Cancer 5, 689–698 (2005).

    Article  CAS  Google Scholar 

  189. Chen, Y. N. et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc. Natl Acad. Sci. USA 96, 4325–4329 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Morris, E. J. et al. Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet. 2, e196 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Moon, N. S., Di Stefano, L. & Dyson, N. A gradient of epidermal growth factor receptor signaling determines the sensitivity of rbf1 mutant cells to E2F-dependent apoptosis. Mol. Cell. Biol. 26, 7601–7615 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Laurie, N. A. et al. Inactivation of the p53 pathway in retinoblastoma. Nature 444, 61–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Laurie, N. A., Schin-Shih, C. & Dyer, M. A. Targeting MDM2 and MDMX in retinoblastoma. Curr. Cancer Drug Targets. 7, 689–695 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Elison, J. R., Cobrinik, D., Claros, N., Abramson, D. H. & Lee, T. C. Small molecule inhibition of HDM2 leads to p53-mediated cell death in retinoblastoma cells. Arch. Ophthalmol. 124, 1269–1275 (2006).

    Article  CAS  PubMed  Google Scholar 

  195. Kitagawa, M., Aonuma, M., Lee, S. H., Fukutake, S. & McCormick, F. E2F-1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines. Oncogene 2 Jun 2008 (doi:10.1038/onc.2008.164).

    Article  CAS  PubMed  Google Scholar 

  196. Salgia, R. & Skarin, A. T. Molecular abnormalities in lung cancer. J. Clin. Oncol. 16, 1207–1217 (1998).

    Article  CAS  PubMed  Google Scholar 

  197. Kelley, M. J. et al. Differential inactivation of CDKN2 and Rb protein in non-small-cell and small-cell lung cancer cell lines. J. Natl Cancer Inst. 87, 756–761 (1995).

    Article  CAS  PubMed  Google Scholar 

  198. Kratzke, R. A. et al. Rb and p16INK4a expression in resected non-small cell lung tumors. Cancer Res. 56, 3415–3420 (1996).

    CAS  PubMed  Google Scholar 

  199. Wang, J. et al. Value of p16INK4a and RASSF1A promoter hypermethylation in prognosis of patients with resectable non-small cell lung cancer. Clin. Cancer Res. 10, 6119–6125 (2004).

    Article  CAS  PubMed  Google Scholar 

  200. Niklinski, J., Niklinska, W., Laudanski, J., Chyczewska, E. & Chyczewski, L. Prognostic molecular markers in non-small cell lung cancer. Lung Cancer 34 (Suppl. 2), S53–S58 (2001).

    Article  PubMed  Google Scholar 

  201. Au, N. H. et al. Evaluation of immunohistochemical markers in non-small cell lung cancer by unsupervised hierarchical clustering analysis: a tissue microarray study of 284 cases and 18 markers. J. Pathol. 204, 101–109 (2004).

    Article  CAS  PubMed  Google Scholar 

  202. Nguyen, V. N., Mirejovsky, P., Mirejovsky, T., Melinova, L. & Mandys, V. Expression of cyclin D1, Ki-67 and PCNA in non-small cell lung cancer: prognostic significance and comparison with p53 and bcl-2. Acta Histochem. 102, 323–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  203. McKay, J. A. et al. Cyclin D1 protein expression and gene polymorphism in colorectal cancer. Aberdeen Colorectal Initiative. Int. J. Cancer 88, 77–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  204. Sgambato, A. et al. Cyclin D1 expression in papillary superficial bladder cancer: its association with other cell cycle-associated proteins, cell proliferation and clinical outcome. Int. J. Cancer 97, 671–678 (2002).

    Article  CAS  PubMed  Google Scholar 

  205. Tut, V. M. et al. Cyclin D1 expression in transitional cell carcinoma of the bladder: correlation with p53, waf1, pRb and Ki67. Br. J. Cancer 84, 270–275 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Mitra, A. P., Datar, R. H. & Cote, R. J. Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J. Clin. Oncol. 24, 5552–5564 (2006).

    Article  CAS  PubMed  Google Scholar 

  207. Cote, R. J. et al. Elevated and absent pRb expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Res. 58, 1090–1094 (1998).

    CAS  PubMed  Google Scholar 

  208. Chatterjee, S. J. et al. Combined effects of p53, p21, and pRb expression in the progression of bladder transitional cell carcinoma. J. Clin. Oncol. 22, 1007–1013 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Brooks, J. D., Bova, G. S. & Isaacs, W. B. Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinomas. Prostate 26, 35–39 (1995).

    Article  CAS  PubMed  Google Scholar 

  210. Cooney, K. A. et al. Distinct regions of allelic loss on 13q in prostate cancer. Cancer Res. 56, 1142–1145 (1996).

    CAS  PubMed  Google Scholar 

  211. Kaltz-Wittmer, C. et al. FISH analysis of gene aberrations (MYC, CCND1, ERBB2, RB, and AR) in advanced prostatic carcinomas before and after androgen deprivation therapy. Lab. Invest. 80, 1455–1464 (2000).

    Article  CAS  PubMed  Google Scholar 

  212. Li, C. et al. Identification of two distinct deleted regions on chromosome 13 in prostate cancer. Oncogene 16, 481–487 (1998).

    Article  CAS  PubMed  Google Scholar 

  213. Melamed, J., Einhorn, J. M. & Ittmann, M. M. Allelic loss on chromosome 13q in human prostate carcinoma. Clin. Cancer Res. 3, 1867–1872 (1997).

    CAS  PubMed  Google Scholar 

  214. Vuhahula, E., Straume, O. & Akslen, L. A. Frequent loss of p16 protein expression and high proliferative activity (Ki-67) in malignant melanoma from black Africans. Anticancer Res. 20, 4857–4862 (2000).

    CAS  PubMed  Google Scholar 

  215. Straume, O., Sviland, L. & Akslen, L. A. Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma. Clin. Cancer Res. 6, 1845–1853 (2000).

    CAS  PubMed  Google Scholar 

  216. Straume, O. & Akslen, L. A. Alterations and prognostic significance of p16 and p53 protein expression in subgroups of cutaneous melanoma. Int. J. Cancer 74, 535–539 (1997).

    Article  CAS  PubMed  Google Scholar 

  217. Alonso, S. R. et al. Progression in cutaneous malignant melanoma is associated with distinct expression profiles: a tissue microarray-based study. Am. J. Pathol. 164, 193–203 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Bachmann, I. M., Straume, O. & Akslen, L. A. Altered expression of cell cycle regulators Cyclin D1, p14, p16, CDK4 and Rb in nodular melanomas. Int. J. Oncol. 25, 1559–1565 (2004).

    CAS  PubMed  Google Scholar 

  219. Korabiowska, M. et al. Downregulation of the retinoblastoma gene expression in the progression of malignant melanoma. Pathobiology 69, 274–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  220. Garcea, G., Neal, C. P., Pattenden, C. J., Steward, W. P. & Berry, D. P. Molecular prognostic markers in pancreatic cancer: a systematic review. Eur. J. Cancer 41, 2213–2236 (2005).

    Article  CAS  PubMed  Google Scholar 

  221. Gerdes, B. et al. p16INK4a is a prognostic marker in resected ductal pancreatic cancer: an analysis of p16INK4a, p53, MDM2, an Rb. Ann. Surg. 235, 51–59 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Hu, Y. X. et al. Frequent loss of p16 expression and its correlation with clinicopathological parameters in pancreatic carcinoma. Clin. Cancer Res. 3, 1473–1477 (1997).

    CAS  PubMed  Google Scholar 

  223. Kawesha, A. et al. K-ras oncogene subtype mutations are associated with survival but not expression of p53, p16INK4A, p21WAF-1, cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. Int. J. Cancer 89, 469–474 (2000).

    Article  CAS  PubMed  Google Scholar 

  224. Gansauge, F., Gansauge, S., Schmidt, E., Muller, J. & Beger, H. G. Prognostic significance of molecular alterations in human pancreatic carcinoma—an immunohistological study. Langenbecks Arch. Surg. 383, 152–155 (1998).

    Article  CAS  PubMed  Google Scholar 

  225. Gansauge, S. et al. Overexpression of cyclin D1 in human pancreatic carcinoma is associated with poor prognosis. Cancer Res. 57, 1634–1637 (1997).

    CAS  PubMed  Google Scholar 

  226. McKay, J. A. et al. Analysis of key cell-cycle checkpoint proteins in colorectal tumours. J. Pathol. 196, 386–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  227. Poller, D. N., Baxter, K. J. & Shepherd, N. A. p53 and Rb1 protein expression: are they prognostically useful in colorectal cancer? Br. J. Cancer 75, 87–93 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Esteller, M. et al. K-ras and p16 aberrations confer poor prognosis in human colorectal cancer. J. Clin. Oncol. 19, 299–304 (2001).

    Article  CAS  PubMed  Google Scholar 

  229. Azechi, H. et al. Disruption of the p16/cyclin D1/retinoblastoma protein pathway in the majority of human hepatocellular carcinomas. Oncology 60, 346–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  230. Lee, T. J. et al. Abrogation of the p16–Rb pathway in Korean hepatocellular carcinomas. Hepatogastroenterology 47, 1663–1668 (2000).

    CAS  PubMed  Google Scholar 

  231. Zucman-Rossi, J. & Laurent-Puig, P. Genetic diversity of hepatocellular carcinomas and its potential impact on targeted therapies. Pharmacogenomics 8, 997–1003 (2007).

    Article  CAS  PubMed  Google Scholar 

  232. Laurent-Puig, P. & Zucman-Rossi, J. Genetics of hepatocellular tumors. Oncogene 25, 3778–3786 (2006).

    Article  CAS  PubMed  Google Scholar 

  233. Anzola, M., Cuevas, N., Lopez-Martinez, M., Martinez de Pancorbo, M. & Burgos, J. J. p16INK4A gene alterations are not a prognostic indicator for survival in patients with hepatocellular carcinoma undergoing curative hepatectomy. J. Gastroenterol. Hepatol. 19, 397–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  234. Fujimoto, Y. et al. Alterations of tumor suppressor genes and allelic losses in human hepatocellular carcinomas in China. Cancer Res. 54, 281–285 (1994).

    CAS  PubMed  Google Scholar 

  235. Lee, J. S. et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nature Med. 12, 410–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  236. Thorgeirsson, S. S., Lee, J. S. & Grisham, J. W. Molecular prognostication of liver cancer: end of the beginning. J. Hepatol. 44, 798–805 (2006).

    Article  CAS  PubMed  Google Scholar 

  237. Lee, J. S. & Thorgeirsson, S. S. Genome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets. Gastroenterology 127, S51–S55 (2004).

    Article  CAS  PubMed  Google Scholar 

  238. Angus, S. P. et al. Retinoblastoma tumor suppressor targets dNTP metabolism to regulate DNA replication. J. Biol. Chem. 277, 44376–44384 (2002).

    Article  CAS  PubMed  Google Scholar 

  239. Cole, S. L. & Tevethia, M. J. Simian virus 40 large T antigen and two independent T-antigen segments sensitize cells to apoptosis following genotoxic damage. J. Virol. 76, 8420–8432 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Balsitis, S. J. et al. Recapitulation of the effects of the human papillomavirus type 16 E7 oncogene on mouse epithelium by somatic Rb deletion and detection of pRb-independent effects of E7 in vivo. Mol. Cell. Biol. 23, 9094–9103 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of their colleagues for thought-provoking discussions that provide the basis for the current Perspective. In particular the authors appreciate the contributions of W. Cavenee, R. Bremner, and T. Tlsty to the preparation of the manuscript. A concerted effort was made to provide a highly inclusive discussion of the field: any omission was accidental and the authors apologize for not being able to cite all of the outstanding studies in the literature. The authors are supported by grants from the NIH: CA10617 and CA104213 to E.S.K. and CA099996 and CA116777 to K.E.K.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

ClinicalTrials.gov

NCT00141297

National Cancer Institute

bladder cancer

breast cancer

cervical cancer

lung cancer

mantle cell lymphoma

oesophageal cancer

parathyroid cancer

prostate cancer

retinoblastoma

National Cancer Institute Drug Dictionary

5-fluorouracil

Casodex

cisplatin

docetaxel

doxorubicin

etoposide

ICI182780

paclitaxel

PD 0325901

PD 0332991

tamoxifen

UCN01

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knudsen, E., Knudsen, K. Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 8, 714–724 (2008). https://doi.org/10.1038/nrc2401

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2401

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing