Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Toll-like receptors and cancer

Abstract

Toll-like receptors (TLRs) are a family of pattern recognition receptors that are best-known for their role in host defence from infection. Emerging evidence also suggests that TLRs have an important role in maintaining tissue homeostasis by regulating the inflammatory and tissue repair responses to injury. The development of cancer has been associated with microbial infection, injury, inflammation and tissue repair. Here we discuss how the function of TLRs may relate to these processes in the context of carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiological functions of Toll-like receptors (TLRs).
Figure 2: Toll-like receptors (TLRs) in tissue repair and tumorigenesis.

Similar content being viewed by others

References

  1. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karin, M. & Greten, F. R. NF-κB: linking inflammation and immunity to cancer development and progression. Nature Rev. Immunol. 5, 749–759 (2005).

    Article  CAS  Google Scholar 

  4. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, M. S. & Kim, Y. J. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem. 76, 447–480 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54 (Pt 1), 1–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Ohashi, K., Burkart, V., Flohe, S. & Kolb, H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164, 558–561 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Vabulas, R. M. et al. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276, 31332–31339 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Vabulas, R. M. et al. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 277, 15107–15112 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Asea, A. et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028–15034 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Dybdahl, B. et al. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through Toll-like receptor-4. Circulation 105, 685–690 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Vabulas, R. M. et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J. Biol. Chem. 277, 20847–20853 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Roelofs, M. F. et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J. Immunol. 176, 7021–7027 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Park, J. S. et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am. J. Physiol. Cell Physiol. 290, C917–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Park, J. S. et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem. 279, 7370–7377 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Liu-Bryan, R., Scott, P., Sydlaske, A., Rose, D. M. & Terkeltaub, R. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum. 52, 2936–2946 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Liu-Bryan, R., Pritzker, K., Firestein, G. S. & Terkeltaub, R. TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J. Immunol. 174, 5016–5023 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Guillot, L. et al. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J. Immunol. 168, 5989–5992 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Okamura, Y. et al. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276, 10229–10233 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Johnson, G. B., Brunn, G. J., Kodaira, Y. & Platt, J. L. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J. Immunol. 168, 5233–5239 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Schaefer, L. et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Invest. 115, 2223–2233 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smiley, S. T., King, J. A. & Hancock, W. W. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J. Immunol. 167, 2887–2894 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Termeer, C. et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med. 195, 99–111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang, D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Med. 11, 1173–1179 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Taylor, K. R. et al. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J. Biol. Chem. 279, 17079–17084 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Taylor, K. R. et al. Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. J. Biol. Chem. 282, 18265–18275 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Mukherjee, S., Vaishnava, S. & Hooper, L. V. Multi-layered regulation of intestinal antimicrobial defense. Cell. Mol. Life Sci. 65, 3019–3027 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3, 710–720 (2003).

    Article  CAS  Google Scholar 

  29. Brandl, K., Plitas, G., Schnabl, B., DeMatteo, R. P. & Pamer, E. G. MyD88-mediated signals induce the bactericidal lectin RegIII γ and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med. 204, 1891–1900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blander, J. M. & Medzhitov, R. Regulation of phagosome maturation by signals from toll-like receptors. Science 304, 1014–1018 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Nathan, C. & Shiloh, M. U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl Acad. Sci. USA 97, 8841–8848 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kleinert, H., Pautz, A., Linker, K. & Schwarz, P. M. Regulation of the expression of inducible nitric oxide synthase. Eur. J. Pharmacol. 500, 255–266 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Park, H. S. et al. Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-κB. J. Immunol. 173, 3589–3593 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Laroux, F. S., Romero, X., Wetzler, L., Engel, P. & Terhorst, C. Cutting edge: MyD88 controls phagocyte NADPH oxidase function and killing of Gram-negative bacteria. J. Immunol. 175, 5596–5600 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Remer, K. A., Brcic, M. & Jungi, T. W. Toll-like receptor-4 is involved in eliciting an LPS-induced oxidative burst in neutrophils. Immunol. Lett. 85, 75–80 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Picker, L. J. & Butcher, E. C. Physiological and molecular mechanisms of lymphocyte homing. Annu. Rev. Immunol. 10, 561–591 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Laudanna, C., Kim, J. Y., Constantin, G. & Butcher, E. Rapid leukocyte integrin activation by chemokines. Immunol. Rev. 186, 37–46 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunol. 2, 947–950 (2001).

    Article  CAS  Google Scholar 

  39. Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28, 2760–2769 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Dieu, M. C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373–386 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gunn, M. D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451–460 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  44. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Gerondakis, S., Grumont, R. J. & Banerjee, A. Regulating B-cell activation and survival in response to TLR signals. Immunol. Cell Biol. 85, 471–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Reiner, S. L., Sallusto, F. & Lanzavecchia, A. Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science 317, 622–625 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Martin, M., Katz, J., Vogel, S. N. & Michalek, S. M. Differential induction of endotoxin tolerance by lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli. J. Immunol. 167, 5278–5285 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Martin, M., Rehani, K., Jope, R. S. & Michalek, S. M. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nature Immunol. 6, 777–784 (2005).

    Article  CAS  Google Scholar 

  50. Monick, M. M. et al. Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of β-catenin. J. Immunol. 166, 4713–4720 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Salaun, B., Romero, P. & Lebecque, S. Toll-like receptors' two-edged sword: when immunity meets apoptosis. Eur. J. Immunol. 37, 3311–3318 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Aliprantis, A. O., Yang, R. B., Weiss, D. S., Godowski, P. & Zychlinsky, A. The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J. 19, 3325–3336 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ruckdeschel, K. et al. Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-β, but not MyD88, in bacteria-infected murine macrophages. J. Immunol. 173, 3320–3328 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Hsu, L. C. et al. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 428, 341–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. De Trez, C. et al. TLR4 and Toll-IL-1 receptor domain-containing adapter-inducing IFN-β, but not MyD88, regulate Escherichia coli-induced dendritic cell maturation and apoptosis in vivo. J. Immunol. 175, 839–846 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Smyth, M. J., Dunn, G. P. & Schreiber, R. D. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv. Immunol. 90, 1–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Larsen, P. H., Holm, T. H. & Owens, T. Toll-like receptors in brain development and homeostasis. Sci. STKE 2007, pe47 (2007).

    Article  PubMed  Google Scholar 

  58. Michelsen, K. S. & Arditi, M. Toll-like receptors and innate immunity in gut homeostasis and pathology. Curr. Opin. Hematol. 14, 48–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Fukata, M. et al. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology 131, 862–877 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Brown, S. L. et al. Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J. Clin. Invest. 117, 258–269 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rolls, A. et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nature Cell Biol. 9, 1081–1088 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Ma, Y. et al. Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J. Cell Biol. 175, 209–215 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kigerl, K. A. et al. Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J. Neurochem. 102, 37–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Babcock, A. A. et al. Toll-like receptor 2 signaling in response to brain injury: an innate bridge to neuroinflammation. J. Neurosci. 26, 12826–12837 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, D. et al. A critical role of Toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J. Biol. Chem. 282, 14975–14983 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Cario, E., Gerken, G. & Podolsky, D. K. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127, 224–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Cario, E., Gerken, G. & Podolsky, D. K. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132, 1359–1374 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Fukata, M. et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1055–G1065 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. & Stappenbeck, T. S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl Acad. Sci. USA 102, 99–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Araki, A. et al. MyD88-deficient mice develop severe intestinal inflammation in dextran sodium sulfate colitis. J. Gastroenterol. 40, 16–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Gibson, D. L. et al. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cell. Microbiol (2007).

  73. Zhang, X. et al. Cutting edge: TLR4 deficiency confers susceptibility to lethal oxidant lung injury. J. Immunol. 175, 4834–4838 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Seki, E. et al. Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration. Hepatology 41, 443–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Campbell, J. S. et al. Proinflammatory cytokine production in liver regeneration is Myd88-dependent, but independent of Cd14, Tlr2, and Tlr4. J. Immunol. 176, 2522–2528 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Macedo, L. Wound healing is impaired in MyD88-deficient mice: a role for MyD88 in the regulation of wound healing by adenosine A2A receptors. Am. J. Pathol. 171, 1774–1788 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, Z. & Schluesener, H. J. Mammalian Toll-like receptors: from endogenous ligands to tissue regeneration. Cell. Mol. Life Sci. 63, 2901–2907 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nature Med. 13, 1324–1332 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Jiang, D., Liang, J., Li, Y. & Noble, P. W. The role of Toll-like receptors in non-infectious lung injury. Cell Res. 16, 693–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Garay, R. P. et al. Cancer relapse under chemotherapy: why TLR2/4 receptor agonists can help. Eur. J. Pharmacol. 563, 1–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin. Orthop. Relat. Res., 3–11 (1991).

  84. Okamoto, H., Shoin, S., Koshimura, S. & Shimizu, R. Studies on the anticancer and streptolysin S-forming abilities of hemolytic streptococci. Jpn. J. Microbiol. 11, 323–326 (1967).

    Article  CAS  PubMed  Google Scholar 

  85. Kikkawa, F. et al. Randomised study of immunotherapy with OK-432 in uterine cervical carcinoma. Eur. J. Cancer 29A, 1542–1546 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Maehara, Y. et al. Postoperative immunochemotherapy including streptococcal lysate OK-432 is effective for patients with gastric cancer and serosal invasion. Am. J. Surg. 168, 36–40 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Sato, M. et al. Therapy for oral squamous cell carcinoma by tegafur and streptococcal agent OK-432 in combination with radiotherapy: association of the therapeutic effect with differentiation and apoptosis in the cancer cells. Apoptosis 2, 227–238 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Okamoto, M. et al. Mechanism of anticancer host response induced by OK-432, a streptococcal preparation, mediated by phagocytosis and Toll-like receptor 4 signaling. J. Immunother. (1997). 29, 78–86 (2006).

    Article  Google Scholar 

  89. Hironaka, K., Yamaguchi, Y., Okita, R., Okawaki, M. & Nagamine, I. Essential requirement of toll-like receptor 4 expression on CD11c+ cells for locoregional immunotherapy of malignant ascites using a streptococcal preparation OK-432. Anticancer Res. 26, 3701–3707 (2006).

    CAS  PubMed  Google Scholar 

  90. Tsuji, S. et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect. Immun. 68, 6883–6890 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Uehori, J. et al. Dendritic cell maturation induced by muramyl dipeptide (MDP) derivatives: monoacylated MDP confers TLR2/TLR4 activation. J. Immunol. 174, 7096–7103 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Razack, A. H. Bacillus Calmette-Guerin and bladder cancer. Asian J. Surg. 30, 302–309 (2007).

    Article  PubMed  Google Scholar 

  93. Krieg, A. M. Development of TLR9 agonists for cancer therapy. J. Clin. Invest. 117, 1184–1194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Otto, F. et al. Phase II trial of intravenous endotoxin in patients with colorectal and non-small cell lung cancer. Eur. J. Cancer 32A, 1712–1718 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Chicoine, M. R. et al. The in vivo antitumoral effects of lipopolysaccharide against glioblastoma multiforme are mediated in part by Toll-like receptor 4. Neurosurgery 60, 372–380; discussion 381 (2007).

    Article  PubMed  Google Scholar 

  96. Sfondrini, L. et al. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J. Immunol. 176, 6624–6630 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Scheel, B. et al. Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur. J. Immunol. 36, 2807–2816 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Stockfleth, E. et al. The use of Toll-like receptor-7 agonist in the treatment of basal cell carcinoma: an overview. Br. J. Dermatol. 149 (Suppl. 66), 53–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Spaner, D. E. & Masellis, A. Toll-like receptor agonists in the treatment of chronic lymphocytic leukemia. Leukemia 21, 53–60 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Carpentier, A. et al. Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro Oncol. 8, 60–66 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Salaun, B., Coste, I., Rissoan, M. C., Lebecque, S. J. & Renno, T. TLR3 can directly trigger apoptosis in human cancer cells. J. Immunol. 176, 4894–4901 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. El Andaloussi, A., Sonabend, A. M., Han, Y. & Lesniak, M. S. Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 54, 526–535 (2006).

    Article  PubMed  Google Scholar 

  103. Haimovitz-Friedman, A. et al. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J. Exp. Med. 186, 1831–1841 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nogueras, S. et al. Coupling of endothelial injury and repair. An analysis using an in vivo experimental model. Am. J. Physiol. Heart Circ. Physiol. 294, H708–H713 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Yusuf, N. Protective role of Toll-like receptor 4 during the initiation stage of cutaneous chemical carcinogenesis. Cancer Res. 68, 615–622 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gaudreault, E., Fiola, S., Olivier, M. & Gosselin, J. Epstein–Barr virus induces MCP-1 secretion by human monocytes via TLR2. J. Virol. 81, 8016–8024 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Broering, R. et al. Toll-like receptor-stimulated non-parenchymal liver cells can regulate hepatitis C virus replication. J. Hepatol 48, 914–922 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Wu, J. et al. Toll-like receptor-mediated control of HBV replication by nonparenchymal liver cells in mice. Hepatology 46, 1769–1778 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Dolganiuc, A. et al. Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology 127, 1513–1524 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Chang, S., Dolganiuc, A. & Szabo, G. Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J. Leukoc. Biol. 82, 479–487 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Yang, R. et al. Papillomavirus-like particles stimulate murine bone marrow-derived dendritic cells to produce α interferon and TH1 immune responses via MyD88. J. Virol. 78, 11152–11160 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ferrero, R. L. Innate immune recognition of the extracellular mucosal pathogen, Helicobacter pylori. Mol. Immunol. 42, 879–885 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Uno, K. Toll-like receptor (TLR) 2 induced through TLR4 signaling initiated by Helicobacter pylori cooperatively amplifies iNOS induction in gastric epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1004–G1012 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Pidgeon, G. P. et al. The role of endotoxin/lipopolysaccharide in surgically induced tumour growth in a murine model of metastatic disease. Br. J. Cancer 81, 1311–1317 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Harmey, J. H. et al. Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int. J. Cancer 101, 415–422 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Luo, J. L., Maeda, S., Hsu, L. C., Yagita, H. & Karin, M. Inhibition of NF-κB in cancer cells converts inflammation- induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression. Cancer Cell 6, 297–305 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Huang, B. et al. Listeria monocytogenes promotes tumor growth via tumor cell Toll-like receptor 2 signaling. Cancer Res. 67, 4346–4352 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Jego, G., Bataille, R., Geffroy-Luseau, A., Descamps, G. & Pellat-Deceunynck, C. Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-like receptors. Leukemia 20, 1130–1137 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Bohnhorst, J. et al. Toll-like receptors mediate proliferation and survival of multiple myeloma cells. Leukemia 20, 1138–1144 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Huang, B. et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 65, 5009–5014 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Maeda, S., Kamata, H., Luo, J. L., Leffert, H. & Karin, M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Naugler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Rakoff-Nahoum, S. & Medzhitov, R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317, 124–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Oshima, M. et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    Google Scholar 

  126. Chulada, P. C. et al. Genetic disruption of Ptgs-1, as well as of Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res. 60, 4705–4708 (2000).

    CAS  PubMed  Google Scholar 

  127. Wilson, C. L., Heppner, K. J., Labosky, P. A., Hogan, B. L. & Matrisian, L. M. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc. Natl Acad. Sci. USA 94, 1402–1407 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hong, K. H., Bonventre, J. C., O'Leary, E., Bonventre, J. V. & Lander, E. S. Deletion of cytosolic phospholipase A2 suppresses ApcMin-induced tumorigenesis. Proc. Natl Acad. Sci. USA 98, 3935–3939 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Swann, J. B. et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc. Natl Acad. Sci. USA 105, 652–656 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rakoff-Nahoum, S., Hao, L. & Medzhitov, R. Role of Toll-like receptors in spontaneous commensal-dependent colitis. Immunity 25, 319–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Okazaki, I. Role of AID in tumorigenesis. Adv. Immunol. 94, 245–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Xu, Z. Regulation of aicda expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination. Crit. Rev. Immunol. 27, 367–397 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bucala, R. Macrophage migration inhibitory factor: a probable link between inflammation and cancer. Immunity 26, 281–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Phan, R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432, 635–639 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Li, M. et al. An essential role of the NF-κB/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J. Immunol. 166, 7128–7135 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, J. H. Endotoxin/lipopolysaccharide activates NF-κB and enhances tumor cell adhesion and invasion through a β1 integrin-dependent mechanism. J. Immunol. 170, 795–804 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Shchors, K. The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1β. Genes Dev. 20, 2527–2538 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Soucek, L. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nature Med. 13, 1211–1218 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Kitano, H. Cancer as a robust system: implications for anticancer therapy. Nature Rev. Cancer 4, 227–235 (2004).

    Article  CAS  Google Scholar 

  142. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  143. El-Omar, E. M., Ng, M. T. & Hold, G. L. Polymorphisms in Toll-like receptor genes and risk of cancer. Oncogene 27, 244–252 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Apetoh, L., Tesniere, A., Ghiringhelli, F., Kroemer, G. & Zitvogel, L. Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res. 68, 4026–4030 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Achyut, B. R., Ghoshal, U. C., Moorchung, N. & Mittal, B. Association of Toll-like receptor-4 (Asp299Gly and Thr399Ileu) gene polymorphisms with gastritis and precancerous lesions. Hum. Immunol. 68, 901–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. He, J. F. et al. Genetic polymorphisms of TLR3 are associated with nasopharyngeal carcinoma risk in Cantonese population. BMC Cancer 7, 194 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Zhou, X. X. et al. Sequence variants in toll-like receptor 10 are associated with nasopharyngeal carcinoma risk. Cancer Epidemiol. Biomarkers Prev. 15, 862–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Chen, Y. C. et al. Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res. 65, 11771–11778 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Zheng, S. L. et al. Sequence variants of Toll-like receptor 4 are associated with prostate cancer risk: results from the CAncer Prostate in Sweden Study. Cancer Res. 64, 2918–2922 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Sun, J. et al. Sequence variants in Toll-like receptor gene cluster (TLR6–TLR1–TLR10) and prostate cancer risk. J. Natl Cancer Inst. 97, 525–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Chen, Y. C., Giovannucci, E., Kraft, P., Lazarus, R. & Hunter, D. J. Association between Toll-like receptor gene cluster (TLR6, TLR1, and TLR10) and prostate cancer. Cancer Epidemiol. Biomarkers Prev. 16, 1982–1989 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Nieters, A., Beckmann, L., Deeg, E. & Becker, N. Gene polymorphisms in Toll-like receptors, interleukin-10, and interleukin-10 receptor α and lymphoma risk. Genes Immun. 7, 615–624 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Forrest, M. S. et al. Polymorphisms in innate immunity genes and risk of non-Hodgkin lymphoma. Br. J. Haematol. 134, 180–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Ohara, T., Morishita, T., Suzuki, H. & Hibi, T. Heterozygous Thr 135 Ala polymorphism at leucine-rich repeat (LRR) in genomic DNA of Toll-like receptor 4 in patients with poorly-differentiated gastric adenocarcinomas. Int. J. Mol. Med. 18, 59–63 (2006).

    CAS  PubMed  Google Scholar 

  155. Boraska Jelavic, T. et al. Microsatelite GT polymorphism in the toll-like receptor 2 is associated with colorectal cancer. Clin. Genet. 70, 156–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Song, C., Chen, L. Z., Zhang, R. H., Yu, X. J. & Zeng, Y. X. Functional variant in the 3′-untranslated region of Toll-like receptor 4 is associated with nasopharyngeal carcinoma risk. Cancer Biol. Ther. 5, 1285–1291 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Hold, G. L. et al. A functional polymorphism of Toll-like receptor 4 gene increases risk of gastric carcinoma and its precursors. Gastroenterology 132, 905–912 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Tahara, T. et al. Toll-like receptor 2 – 196 to 174del polymorphism influences the susceptibility of Japanese people to gastric cancer. Cancer Sci. 98, 1790–1794 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Cerhan, J. R. et al. Genetic variation in 1253 immune and inflammation genes and risk of non-Hodgkin lymphoma. Blood 110, 4455–4463 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Rakoff-Nahoum.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

BCG

bleomycin

imiquimod

Pathway interaction Database

PI3K–Akt signalling

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakoff-Nahoum, S., Medzhitov, R. Toll-like receptors and cancer. Nat Rev Cancer 9, 57–63 (2009). https://doi.org/10.1038/nrc2541

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2541

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing