Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer

Abstract

Viruses have been engineered for cancer therapy in a variety of ways. Approaches include non-replicating gene therapy vectors, cancer vaccines and oncolytic viruses, but the clinical efficacy of these approaches has been limited by multiple factors. However, a new therapeutic class of oncolytic poxviruses has recently been developed that combines targeted and armed approaches for treating cancer. Initial preclinical and clinical results show that products from this therapeutic class can systemically target cancers in a highly selective and potent fashion using a multi-pronged mechanism of action.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selectivity of oncolytic vaccinia strains for tumour cells.
Figure 2: Mechanisms of action of oncolytic vaccinia virus.

Similar content being viewed by others

References

  1. Petrelli, A. & Giordano, S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr. Med. Chem. 15, 422–432 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Podar, K. et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc. Natl Acad. Sci. USA 103, 19478–19483 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Demetri, G. D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368, 1329–1338 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Le Tourneau, C., Faivre, S. & Raymond, E. New developments in multitargeted therapy for patients with solid tumours. Cancer Treat. Rev. 34, 37–48 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Kerr, D. Clinical development of gene therapy for colorectal cancer. Nature Rev. Cancer 3, 615–622 (2003).

    Article  CAS  Google Scholar 

  6. Zeimet, A. G. & Marth, C. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol 4, 415–422 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. McCormick, F. Cancer gene therapy: fringe or cutting edge? Nature Rev. Cancer 1, 130–141 (2001).

    Article  CAS  Google Scholar 

  8. Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nature Med. 10, 909–915 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Amato, R. J. et al. Vaccination of prostate cancer patients with modified vaccinia ankara delivering the tumor antigen 5T4 (TroVax): a phase 2 trial. J. Immunother. 31, 577–585 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Gulley, J. L. et al. Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin. Cancer Res. 14, 3060–3069 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heise, C. et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med. 3, 639–645 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Bell, J. C., Lichty, B. & Stojdl, D. Getting oncolytic virus therapies off the ground. Cancer Cell 4, 7–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Parato, K. A., Senger, D., Forsyth, P. A. & Bell, J. C. Recent progress in the battle between oncolytic viruses and tumours. Nature Rev. Cancer 5, 965–976 (2005).

    Article  CAS  Google Scholar 

  14. Thorne, S. H., Hermiston, T. & Kirn, D. Oncolytic virotherapy: approaches to tumor targeting and enhancing antitumor effects. Semin. Oncol. 32, 537–548 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Coffey, M. C., Strong, J. E., Forsyth, P. A. & Lee, P. W. Reovirus therapy of tumors with activated Ras pathway. Science 282, 1332–1334 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Norman, K. L. & Lee, P. W. Reovirus as a novel oncolytic agent. J. Clin. Invest. 105, 1035–1038 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stojdl, D. F. et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nature Med. 6, 821–825 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Stojdl, D. F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4, 263–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Bischoff, J. R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Heise, C. et al. An adenovirus E1A mutant that demonstrates potent and selective antitumoral efficacy. Nature Med. 6, 1134–1139 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Mineta, T., Rabkin, S. D., Yazaki, T., Hunter, W. D. & Martuza, R. L. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nature Med. 1, 938–943 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Mineta, T., Rabkin, S. D. & Martuza, R. L. Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res. 54, 3963–3966 (1994).

    CAS  PubMed  Google Scholar 

  23. Comins, C. et al. Reovirus: Viral therapy for cancer 'as nature intended'. Clin. Oncol. 20, 548–554 (2008).

    Article  CAS  Google Scholar 

  24. Kirn, D., Hermiston, T. & McCormick, F. ONYX-015: Clinical data are encouraging. Nature Med. 4, 1341–1342 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Khuri, F. et al. A controlled trial of Onyx-015, an E1B gene-deleted adenovirus, in combination with chemotherapy in patients with recurrent head and neck cancer. Nature Med. 6, 879–885 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Nemunaitis, J. et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J. Clin. Oncol. 19, 289–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Reid, T. et al. Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther. 8, 1618–1626 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reid, T. et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res. 62, 6070–6079 (2002).

    CAS  PubMed  Google Scholar 

  29. Liu, T. C., Hwang, T. H., Bell, J. C. & Kirn, D. H. Translation of targeted oncolytic virotherapeutics from the lab into the clinic, and back again: a high-value iterative loop. Mol. Ther. 16, 1006–1008 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, J. H. et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol. Ther. 14, 361–370 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Kirn, D. H., Wang, Y., Le Boeuf, F., Bell, J. & Thorne, S. H. Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med. 4, e353 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Thorne, S. H. et al. Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, JX-963. J. Clin. Invest. 117, 3350–3358 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McCart, J. A. et al. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res. 61, 8751–8757 (2001).

    CAS  PubMed  Google Scholar 

  34. Guo, Z. S. et al. The enhanced tumor selectivity of an oncolytic vaccinia lacking the host range and antiapoptosis genes SPI-1 and SPI-2. Cancer Res. 65, 9991–9998 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, T. C., Hwang, T., Park, B. H., Bell, J. & Kirn, D. H. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol. Ther. 16, 1637–1642 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Park, B. H. et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 9, 533–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Moss, B. in Field's Virology Ch. 84 (eds Fields, B. N., Knipe, D.M. & Howley, P. M.) (Lippincott-Raven, Philadelphia, 2001).

    Google Scholar 

  38. Buller, R. M. & Palumbo, G. J. Poxvirus pathogenesis. Microbiol. Rev. 55, 80–122 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fenner, F., Henderson, D. A., Arita, I., Jezek, Z. & Ladnyi, I. D. Smallpox and its eradication (World Health Organization, Geneva, 1988).

    Google Scholar 

  40. Enserink, M. Bioterrorism. In search of a kinder, gentler vaccine. Science 296, 1594 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Cono, J., Casey, C. G. & Bell, D. M. Smallpox vaccination and adverse reactions. Guidance for clinicians. MMWR Recomm. Rep. 52, 1–28 (2003).

    PubMed  Google Scholar 

  42. Miller, J. D. et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28, 710–722 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Putz, M. M., Midgley, C. M., Law, M. & Smith, G. L. Quantification of antibody responses against multiple antigens of the two infectious forms of Vaccinia virus provides a benchmark for smallpox vaccination. Nature Med. 12, 1310–1315 (2006).

    Article  PubMed  CAS  Google Scholar 

  44. Graham, B. S. et al. Determinants of antibody response after recombinant gp160 boosting in vaccinia-naive volunteers primed with gp160-recombinant vaccinia virus. The National Institute of Allergy and Infectious Diseases AIDS Vaccine Clinical Trials Network. J. Infect. Dis. 170, 782–786 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Kanesa-thasan, N. et al. Safety and immunogenicity of NYVAC-JEV and ALVAC-JEV attenuated recombinant Japanese encephalitis virus — poxvirus vaccines in vaccinia-nonimmune and vaccinia-immune humans. Vaccine 19, 483–491 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. McClain, D. J., Summers, P. L., Harrison, S. A., Schmaljohn, A. L. & Schmaljohn, C. S. Clinical evaluation of a vaccinia-vectored Hantaan virus vaccine. J. Med. Virol. 60, 77–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Cadoz, M. et al. Immunisation with canarypox virus expressing rabies glycoprotein. Lancet 339, 1429–1432 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Ockenhouse, C. F. et al. Phase I/IIa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. J. Infect. Dis. 177, 1664–16673 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Doehn, C., Kausch, I., Bohmer, T., Sommerauer, M. & Jocham, D. Drug evaluation: Therion's rV-PSA-TRICOM + rF-PSA-TRICOM prime–boost prostate cancer vaccine. Curr. Opin. Mol. Ther. 9, 183–189 (2007).

    CAS  PubMed  Google Scholar 

  50. Rochlitz, C. et al. Phase I immunotherapy with a modified vaccinia virus (MVA) expressing human MUC1 as antigen-specific immunotherapy in patients with MUC1-positive advanced cancer. J. Gene. Med. 5, 690–699 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Jager, E. et al. Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc. Natl Acad. Sci. USA 103, 14453–14458 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wein, L. M., Wu, J. T. & Kirn, D. H. Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res. 63, 1317–1324 (2003).

    CAS  PubMed  Google Scholar 

  53. Mercer, J. & Helenius, A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Moss, B. Poxvirus entry and membrane fusion. Virology 344, 48–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Vanderplasschen, A., Mathew, E., Hollinshead, M., Sim, R. B. & Smith, G. L. Extracellular enveloped vaccinia virus is resistant to complement because of incorporation of host complement control proteins into its envelope. Proc. Natl Acad. Sci. USA 95, 7544–7549 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bell, E. et al. Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin. Virology 325, 425–431 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Kirn, D. H., Wang, Y., Liang, W., Contag, C. H. & Thorne, S. H. Enhancing poxvirus oncolytic effects through increased spread and immune evasion. Cancer Res. 68, 2071–2075 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Wittek, R. Vaccinia immune globulin: current policies, preparedness, and product safety and efficacy. Int. J. Infect. Dis. 10, 193–201 (2006).

    Article  PubMed  Google Scholar 

  59. De Clercq, E. Cidofovir in the treatment of poxvirus infections. Antiviral Res. 55, 1–13 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Yang, G. et al. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge. J. Virol. 79, 13139–13149 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reeves, P. M. et al. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nature Med. 11, 731–739 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Smith, G. L. & Moss, B. Infectious poxvirus vectors have capacity for at least 25000 base pairs of foreign DNA. Gene 25, 21–28 (1983).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, F. et al. Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nature Immunol. 5, 1266–1274 (2004).

    Article  CAS  Google Scholar 

  64. Wang, G. et al. Infection of human cancer cells with myxoma virus requires Akt activation via interaction with a viral ankyrin-repeat host range factor. Proc. Natl Acad. Sci. USA 103, 4640–4645 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu, Y. A. et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nature Biotechnol. 22, 313–320 (2004).

    Article  CAS  Google Scholar 

  66. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Katsafanas, G. C. & Moss, B. Vaccinia virus intermediate stage transcription is complemented by Ras-GTPase-activating protein SH3 domain-binding protein (G3BP) and cytoplasmic activation/proliferation-associated protein (p137) individually or as a heterodimer. J. Biol. Chem. 279, 52210–52217 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, H. et al. Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction. J. Clin. Invest. 115, 379–387 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Foloppe, J. et al. Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther. 15, 1361–1371 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, Q. et al. Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer Res. 67, 10038–10046 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Gnant, M. F. et al. Tumor-specific gene delivery using recombinant vaccinia virus in a rabbit model of liver metastases. J. Natl Cancer Inst. 91, 1744–1750 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Buller, R. M., Smith, G. L., Cremer, K., Notkins, A. L. & Moss, B. Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317, 813–815 (1985).

    Article  CAS  PubMed  Google Scholar 

  73. Hengstschlager, M. et al. Different regulation of thymidine kinase during the cell cycle of normal versus DNA tumor virus-transformed cells. J. Biol. Chem. 269, 13836–13842 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Buller, R. M., Chakrabarti, S., Moss, B. & Fredrickson, T. Cell proliferative response to vaccinia virus is mediated by VGF. Virology 164, 182–192 (1988).

    Article  CAS  PubMed  Google Scholar 

  75. Tzahar, E. et al. Pathogenic poxviruses reveal viral strategies to exploit the ErbB signaling network. EMBO J. 17, 5948–5963 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. de Magalhaes, J. C. et al. A mitogenic signal triggered at an early stage of vaccinia virus infection: implication of MEK/ERK and protein kinase A in virus multiplication. J. Biol. Chem. 276, 38353–38360 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Alcami, A. & Smith, G. L. A soluble receptor for interleukin-1β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71, 153–167 (1992).

    Article  CAS  PubMed  Google Scholar 

  78. Kettle, S. et al. Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1beta-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1beta-induced fever. J. Gen. Virol. 78 (Pt 3), 677–685 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Taylor, J. M., Quilty, D., Banadyga, L. & Barry, M. The vaccinia virus protein F1L interacts with Bim and inhibits activation of the pro-apoptotic protein Bax. J. Biol. Chem. 281, 39728–39739 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Yang, S. et al. A new recombinant vaccinia with targeted deletion of three viral genes: its safety and efficacy as an oncolytic virus. Gene Ther. 14, 638–647 (2007).

    Article  PubMed  CAS  Google Scholar 

  81. Colamonici, O. R., Domanski, P., Sweitzer, S. M., Larner, A. & Buller, R. M. Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon α transmembrane signaling. J. Biol. Chem. 270, 15974–15978 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Symons, J. A., Alcami, A. & Smith, G. L. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81, 551–560 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Clarke, M. F. & Becker, M. W. Stem cells: the real culprits in cancer? Sci. Am. 295, 52–59 (2006).

    Article  PubMed  Google Scholar 

  84. Clarke, M. F. & Fuller, M. Stem cells and cancer: two faces of eve. Cell 124, 1111–1115 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Lotze, M. T. & Tracey, K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Rev. Immunol. 5, 331–342 (2005).

    Article  CAS  Google Scholar 

  86. Rubartelli, A. & Lotze, M. T. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 28, 429–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Zhu, J., Martinez, J., Huang, X. & Yang, Y. Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-β. Blood 109, 619–625 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Breitbach, C. J. et al. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol. Ther. 15, 1686–1693 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Gnant, M. F., Puhlmann, M., Alexander, H. R. Jr & Bartlett, D. L. Systemic administration of a recombinant vaccinia virus expressing the cytosine deaminase gene and subsequent treatment with 5-fluorocytosine leads to tumor-specific gene expression and prolongation of survival in mice. Cancer Res. 59, 3396–3403 (1999).

    CAS  PubMed  Google Scholar 

  90. Kumar, S., Gao, L., Yeagy, B. & Reid, T. Virus combinations and chemotherapy for the treatment of human cancers. Curr. Opin. Mol. Ther. 10, 371–379 (2008).

    PubMed  Google Scholar 

  91. Panchanathan, V., Chaudhri, G. & Karupiah, G. Protective immunity against secondary poxvirus infection is dependent on antibody but not on CD4 or CD8 T-cell function. J. Virol. 80, 6333–6338 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Naito, T., Kaneko, Y. & Kozbor, D. Oral vaccination with modified vaccinia virus Ankara attached covalently to TMPEG-modified cationic liposomes overcomes pre-existing poxvirus immunity from recombinant vaccinia immunization. J. Gen. Virol. 88, 61–70 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Green, N. K. et al. Retargeting polymer-coated adenovirus to the FGF receptor allows productive infection and mediates efficacy in a peritoneal model of human ovarian cancer. J. Gene. Med. 10, 280–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Blasco, R., Sisler, J. R. & Moss, B. Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: effect of a point mutation in the lectin homology domain of the A34R gene. J. Virol. 67, 3319–3325 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Katz, E., Ward, B. M., Weisberg, A. S. & Moss, B. Mutations in the vaccinia virus A33R and B5R envelope proteins that enhance release of extracellular virions and eliminate formation of actin-containing microvilli without preventing tyrosine phosphorylation of the A36R protein. J. Virol. 77, 12266–12275 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Thorne, S. H., Negrin, R. S. & Contag, C. H. Synergistic antitumor effects of immune cell–viral biotherapy. Science 311, 1780–1784 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Cole, C. et al. Tumor-targeted, systemic delivery of therapeutic viral vectors using hitchhiking on antigen-specific T cells. Nature Med. 11, 1073–1081 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Qiao, J. et al. Purging metastases in lymphoid organs using a combination of antigen-nonspecific adoptive T cell therapy, oncolytic virotherapy and immunotherapy. Nature Med. 14, 37–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Power, A. T. et al. Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol. Ther. 15, 123–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Ong, H. T., Hasegawa, K., Dietz, A. B., Russell, S. J. & Peng, K. W. Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther. 14, 324–333 (2006).

    Article  PubMed  CAS  Google Scholar 

  101. Chang, H. Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA 102, 3738–3743 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Herberman, R. B. Cancer immunotherapy with natural killer cells. Semin. Oncol. 29, 27–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Baker, J., Verneris, M. R., Ito, M., Shizuru, J. A. & Negrin, R. S. Expansion of cytolytic CD8+ natural killer T cells with limited capacity for graft-versus-host disease induction due to interferon γ production. Blood 97, 2923–2931 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Chakrabarti, S., Sisler, J. R. & Moss, B. Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques 23, 1094–1097 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Davison, A. J. & Moss, B. Structure of vaccinia virus late promoters. J. Mol. Biol. 210, 771–784 (1989).

    Article  CAS  PubMed  Google Scholar 

  107. Banaszynski, L. A., Sellmyer, M. A., Contag, C. H., Wandless, T. J. & Thorne, S. H. Chemical control of protein stability and function in living animals. Nature Med. 14, 1123–1127 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Hodge, J. W. et al. A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res. 59, 5800–5807 (1999).

    CAS  PubMed  Google Scholar 

  109. Thorne, S. H., Tam, B. Y., Kirn, D. H., Contag, C. H. & Kuo, C. J. Selective intratumoral amplification of an antiangiogenic vector by an oncolytic virus produces enhanced antivascular and anti-tumor efficacy. Mol. Ther. 13, 938–946 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Kim, J. H. et al. Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J. Natl Cancer Inst. 98, 1482–1493 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. McCart, J. A. et al. Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression. Gene Ther. 7, 1217–1223 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Chalikonda, S. et al. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene. Cancer Gene Ther. 15, 115–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Smith, G. L., Symons, J. A., Khanna, A., Vanderplasschen, A. & Alcami, A. Vaccinia virus immune evasion. Immunol. Rev. 159, 137–154 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Thorne, S. H. & Contag, C. H. Using in vivo bioluminescence imaging to shed light on cancer biology. Proc. IEEE 93, 750–762 (2005).

    Article  CAS  Google Scholar 

  115. Luker, K. E., Hutchens, M., Schultz, T., Pekosz, A. & Luker, G. D. Bioluminescence imaging of vaccinia virus: effects of interferon on viral replication and spread. Virology 341, 284–300 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Gross, S. & Piwnica-Worms, D. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7, 5–15 (2005).

    CAS  PubMed  Google Scholar 

  117. Groot-Wassink, T., Aboagye, E. O., Glaser, M., Lemoine, N. R. & Vassaux, G. Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum. Gene Ther. 13, 1723–1735 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. McCart, J. A. et al. Oncolytic vaccinia virus expressing the human somatostatin receptor SSTR2: molecular imaging after systemic delivery using 111In-pentetreotide. Mol. Ther. 10, 553–561 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Weissleder, R. et al. In vivo magnetic resonance imaging of transgene expression. Nature Med. 6, 351–355 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Halsell, J. S. et al. Myopericarditis following smallpox vaccination among vaccinia-naive US military personnel. JAMA 289, 3283–3289 (2003).

    Article  PubMed  Google Scholar 

  121. Kwak, H., Horig, H. & Kaufman, H. L. Poxviruses as vectors for cancer immunotherapy. Curr. Opin. Drug Discov. Devel. 6, 161–168 (2003).

    CAS  PubMed  Google Scholar 

  122. Essajee, S. & Kaufman, H. L. Poxvirus vaccines for cancer and HIV therapy. Expert Opin. Biol. Ther. 4, 575–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Arlen, P. M., Kaufman, H. L. & DiPaola, R. S. Pox viral vaccine approaches. Semin. Oncol. 32, 549–555 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Hunter-Craig, I., Newton, K. A., Westbury, G. & Lacey, B. W. Use of vaccinia virus in the treatment of metastatic malignant melanoma. BMJ 2, 512–515 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Roenigk, H. H. Jr, Deodhar, S., St Jacques, R. & Burdick, K. Immunotherapy of malignant melanoma with vaccinia virus. Arch. Dermatol. 109, 668–673 (1974).

    Article  PubMed  Google Scholar 

  126. Burdick, K. H. Malignant melanoma treated with vaccinia injections. Arch. Dermatol. 82, 438–439 (1960).

    Google Scholar 

  127. Mastrangelo, M. J., Maguire, H. C. & Lattime, E. C. Intralesional vaccinia/GM-CSF recombinant virus in the treatment of metastatic melanoma. Adv. Exp. Med. Biol. 465, 391–400 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Belisario, J. C. & Milton, G. W. The experimental local therapy of cutaneous metastases of malignant melanoblastomas with cow pox vaccine or colcemid (demecolcine or omaine). Aust. J. Dermatol. 6, 113–118 (1961).

    Article  CAS  PubMed  Google Scholar 

  129. Lee, S. S., Eisenlohr, L. C., McCue, P. A., Mastrangelo, M. J. & Lattime, E. C. Intravesical gene therapy: in vivo gene transfer using recombinant vaccinia virus vectors. Cancer Res. 54, 3325–3328 (1994).

    CAS  PubMed  Google Scholar 

  130. Mastrangelo, M. J. et al. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. 6, 409–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Choi, H. et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J. Clin. Oncol. 25, 1753–1759 (2007).

    Article  PubMed  Google Scholar 

  132. Ramesh, N. et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor–armed oncolytic adenovirus for the treatment of bladder cancer. Clin. Cancer Res. 12, 305–313 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Hu, J. C. et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin. Cancer Res. 12, 6737–6747 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Declaration: Dr Kirn is the founder and CEO of Jennerex Biotherapeutics. Dr Thorne is a shareholder of Jennerex Biotherapeutics.

Supplementary information

Supplementary information S1 (table)

Clinical trials experience with armed oncolytic poxvirus therapeutics: completed and on-going trials (PDF 223 kb)

Related links

Related links

DATABASES

Clinical trials

NCT00574977

Entrez Genome

hepatitis B virus

vaccinia

FURTHER INFORMATION

Steve H. Thorne's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirn, D., Thorne, S. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer 9, 64–71 (2009). https://doi.org/10.1038/nrc2545

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2545

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing