Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Tumour necrosis factor and cancer

Abstract

Tumour necrosis factor (TNF) is a major inflammatory cytokine that was first identified for its ability to induce rapid haemorrhagic necrosis of experimental cancers. When efforts to harness this anti-tumour activity in cancer treatments were underway, a paradoxical tumour-promoting role of TNF became apparent. Now that links between inflammation and cancer are appreciated, is TNF a target or a therapeutic in malignant disease — or both?

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treatment with Coley's toxins.
Figure 2: The pro- and anti-tumour actions of tumour necrosis factor (TNF) in mouse models of cancer.
Figure 3: Pro-tumour actions of tumour necrosis factor (TNF) in the tumour microenvironment.

References

  1. Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumours. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am. J. Med. Sci. 105, 487–511 (1893).

    Article  Google Scholar 

  3. Nauts, H. C., Swift, W. E. & Coley, B. L. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D. Reviewed in the light of modern research. Cancer Res. 6, 205–216 (1946).

    CAS  PubMed  Google Scholar 

  4. Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Moore, R. et al. Tumour necrosis factor-α deficient mice are resistant to skin carcinogenesis. Nature Med. 5, 828–831 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 4461–4466 (2004).

    Article  CAS  Google Scholar 

  7. Balkwill, F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev. 25, 409–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Sethi, G., Sung, B. & Aggarwal, B. B. TNF: a master switch for inflammation to cancer. Front. Biosci. 13, 5094–5107 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nature Rev. Immunol. 2, 364–371 (2002).

    Article  CAS  Google Scholar 

  10. Sands, B. E. et al. Infliximab maintenance therapy for fistulizing Crohn's disease. N. Engl. J. Med. 350, 876–885 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Tracey, D., Klareskog, L., Sasso, E. H., Salfeld, J. G. & Tak, P. P. Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol. Therapeut. 117, 244–279 (2008).

    Article  CAS  Google Scholar 

  12. Madhusudan, S. et al. A phase II study of Etanercept (Enbrel), a tumour necrosis factor-α inhibitor in patients with metastatic breast cancer. Clin. Cancer Res. 10, 6528–6534 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Madhusudan, S. et al. A phase II study of Ethanercept (ENBREL) a tumour necrosis factor- α inhibitor in recurrent ovarian cancer. J. Clin. Oncol. 23, 5950–5959 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Harrison, M. L. et al. Tumor necrosis factor α as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J. Clin. Oncol. 25, 4542–4549 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, E. R. et al. A clinical study assessing the tolerability and biological effects of infliximab, a TNF-α inhibitor, in patients with advanced cancer. Ann. Oncol. 19, 1340–1346 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Daniel, D. & Wilson, N. S. Tumor necrosis factor: renaissance as a cancer therapeutic? Curr. Cancer Drug Targets. 8, 124–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Coley, W. B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the streptococcus erysipelas and the bacillus prodigiosus). Proc. R. Soc. Med. 3 (Surg. Sect), 1–48 (1909).

    Google Scholar 

  18. Hall, S. S. A Commotion in the Blood 21–127 (Henry Holt, New York, 1997).

    Google Scholar 

  19. Coley, W. B. Contribution to the knowledge of sarcoma. Ann. Surg. 14, 199–220 (1891).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coley, W. B. Late results of the treatment of inoperable sarcoma by the mixed toxins of erysipelas and bacillus prodigiosus. Am. J. Med. Sci. 131, 375–430 (1906).

    Google Scholar 

  21. Coley Nauts, H., Fowler, G. A. & Bogatko, F. H. A review of the influence of bacterial infection and of bacterial products (Coley's toxins) on malignant tumors in man. Acta Med. Scand., 29–97 (1953).

  22. Gratia, A. & Linz, R. Le phenomenene de Schwartzman dans le sarcome du cobaye. C R. Soc. Biol. 108, 427–428 (1931) (in French).

    Google Scholar 

  23. Shear, M. J. & Perrault, A. Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage-producing bacterial polysaccharide. J. Natl Cancer Inst. 44, 461–476 (1944).

    Google Scholar 

  24. O'Malley, W. E., Achinstein, B. & Shear, M. J. Action of bacterial polysaccharide on tumours. II. Damage of sarcoma 37 by serum of mice treated with serratia marcescens polysaccharide, and induced tolerance. J. Natl Cancer Inst. 29, 1169–1175 (1962).

    CAS  Google Scholar 

  25. Granger, G. A. & Kolb, W. P. Lymphocyte in vitro cytotoxicity: mechanisms of immune and non-immune small lymphocyte mediated target L cell destruction. J. Immunol. 101, 111–120 (1968).

    CAS  PubMed  Google Scholar 

  26. Aggarwal, B. B. et al. Human tumor necrosis factor. Production, purification, and characterisation. J. Biol. Chem. 260, 2345–2354 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Aggarwal, B. B., Moffat, B. & Harkins, R. N. Human lymphotoxin. Production by a lymphoblastoid cell line, purification, and initial characterization. J. Biol. Chem. 259, 686–691 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Aggarwal, B. B., Henzel, W. J., Moffat, B., Kohr, W. J. & Harkins, R. N. Primary structure of human lymphotoxin derived from 1788 lymphoblastoid cell line. J. Biol. Chem. 260, 2334–2344 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Aggarwal, B. B., Eessalu, T. E. & Hass, P. E. Characterization of receptors for human tumour necrosis factor and their regulation by γ-interferon. Nature 318, 665–667 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Pennica, D. et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312, 724–729 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Gray, P. W. et al. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumour necrosis activity. Nature 312, 721–724 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Marmenout, A. et al. Molecular cloning and expression of human tumor necrosis factor and comparison with mouse tumor necrosis factor. Eur. J. Biochem. 152, 515–522 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Fransen, L. et al. Molecular cloning of mouse tumour necrosis factor cDNA and its eukaryotic expression. Nucleic Acids Res. 13, 4417–4429 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hahn, T. et al. Use of monoclonal antibodies to a human cytotoxin for its isolation and for examining the self induction of resistance to this protein. Proc. Natl Acad. Sci. USA 82, 3814–3818 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hehlgans, T. & Pfeffer, K. The intriguing biology of the tumor necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 115, 1–20 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dillon, S. R., Gross, J. A., Ansell, S. M. & Novak, A. J. An APRIL to remember: novel TNF ligands as therapeutic targets. Nature Rev. Drug Discov. 5, 235–242 (2006).

    Article  CAS  Google Scholar 

  37. Sabbagh, L., Snell, L. M. & Watts, T. H. TNF family ligands define niches for T cell memory. Trends Immunol. 28, 333–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Engelmann, H., Aderka, D., Rubinstein, M., Rotman, D. & Wallach, D. A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. J. Biol. Chem. 264, 11974–11980 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Engelmann, H., Novick, D. & Wallach, D. Two tumor necrosis factor-binding proteins purified from human urine. Evidence for immunological cross-reactivity with cell surface tumor necrosis factor receptors. J. Biol. Chem. 265, 1531–1536 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Loetscher, H. et al. Molecular cloning and expression of the human 55 KD tumor necrosis factor receptor. Cell 61, 351–359 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Schall, T. J. et al. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61, 361–370 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Smith, C. A. et al. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248, 1019–1023 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Heller, R. A. et al. Complementary DNA cloning of a receptor for tumor necrosis factor and demonstration of a shed form of the receptor. Proc. Natl Acad. Sci. USA 87, 6151–6155 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beutler, B. A. The role of tumor necrosis factor in health and disease. J. Rheumatol. 26, 16–21 (1999).

    Google Scholar 

  45. Feldmann, M. Many cytokines are very useful therapeutic targets in disease. J. Clin. Invest. 118, 3533–3536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor a (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Brouckaert, P. G. G., Leroux-Roels, G. G., Guisez, Y., Tavernier, J. & Fiers, W. In vivo anti-tumour activity of recombinant human and murine TNF, alone and in combination with murine IFN-gamma on a syngeneic murine melanoma. Int. J. Cancer 38, 763–769 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Balkwill, F. R. et al. Human tumour xenografts treated with recombinant human tumor necrosis factor alone or in combination with interferons. Cancer Res. 46, 3990–3993 (1986).

    CAS  PubMed  Google Scholar 

  49. Talmadge, J. E. et al. Immunomodulatory properties of recombinant murine and human tumor necrosis factor. Cancer Res. 48, 544–550 (1988).

    CAS  PubMed  Google Scholar 

  50. Watanabe, N. et al. Synergistic cytotoxic and antitumour effects of recombinant tumour necrosis factor and hyperthermia. Cancer Res. 48, 650–653 (1988).

    CAS  PubMed  Google Scholar 

  51. Nawroth, P. et al. Tumor necrosis factor/cachectin-induced intravascular fibrin formation in meth A fibrosarcomas. J. Exp. Med. 168, 637–647 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Mantovani, A. & Dejana, E. Cytokines as communication signals between leukocytes and endothelial cells. Immunol. Today 10, 370–375 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Kettlehut, I. C., Fiers, W. & Goldberg, A. L. The toxic effects of tumor necrosis factor in vivo and their prevention by cyclooxygenase inhibitors. Proc. Natl Acad. Sci. USA 84, 4273–4277 (1987).

    Article  Google Scholar 

  54. Havell, E. A., Fiers, W. & North, R. J. The antitumor function of tumor necrosis factor (TNF). 1. Therapeutic action of TNF against an established murine sarcoma is indirect, immunologically dependent, and limited by severe toxicity. J. Exp. Med. 167, 1067–1085 (1988).

    Article  CAS  PubMed  Google Scholar 

  55. Lienard, D., Ewalenko, P., Delmotte, J.-J., Renard, N. & Lejeune, F. J. High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J. Clin. Oncol. 10, 52–60 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Nooijen, P. T. et al. Synergistic effects of TNF-alpha and melphalan in an isolated limb perfusion model of rat sarcoma: a histopathological, immunohistochemical and electron microscopical study. Br. J. Cancer 74, 1908–1915 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Wilt, J. H. et al. Prerequisites for effective isolated limb perfusion using tumour necrosis factor alpha and melphalan in rats. Br. J. Cancer 80, 161–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. van der Veen, A. H. et al. TNF-α augments intratumoural concentrations of doxorubicin in TNF-α-based isolated limb perfusion in rat sarcoma models and enhances anti-tumour efects. Br. J. Cancer 82, 973–980 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Seynhaeve, A. L. et al. Tumor necrosis factor α mediates homogeneous distribution of liposomes in murine melanoma that contributes to a better tumor response. Cancer Res. 67, 9455–9462 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Colotta, F., Peri, G., Villa, A. & Mantovani, A. Rapid killing of actinomycin D-treated tumor cells by human mononuclear cells. 1. Effectors belong to the monocyte-macrophage lineage. J. Immunol. 132, 936–944 (1984).

    CAS  PubMed  Google Scholar 

  61. Sugarman, B. J. et al. Recombinant human tumor necrosis factor alpha: effects on proliferation of normal and transformed cells in vitro. Science 230, 943–945 (1985).

    Article  CAS  PubMed  Google Scholar 

  62. Dealtry, G. B., Naylor, M. S., Fiers, W. & Balkwill, F. R. The effect of recombinant human tumour necrosis factor on growth and macromolecular synthesis of human epithelial cells. Exp. Cell Res. 170, 428–438 (1987).

    Article  CAS  PubMed  Google Scholar 

  63. Fransen, L., Van der Heyden, J., Ruysschaert, R. & Fiers, W. Recombinant tumor necrosis factor: its effect and its synergism with interferon-gamma on a variety of normal and transformed human cell lines. Eur. J. Cancer Clin. Oncol. 22, 419–426 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. Williamson, B. D., Carswell, E. A., Rubin, B. Y. & Prendergast, J. S. Human tumor necrosis factor produced by human B-cell lines: synergistic cytotoxic interaction with human interferons. Proc. Natl Acad. Sci. USA 80, 5397–5401 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wallach, D. Preparations of lymphotoxin induce resistance to their own cytotoxic effect. J. Immunol. 132, 2464–2469 (1984).

    CAS  PubMed  Google Scholar 

  66. Palladino, M. A. Jr et al. Characterization of the antitumor activities of human tumor necrosis factor alpha and the comparison with other cytokines: induction of tumor-specific immunity. J. Immunol. 138, 4023–4032 (1987).

    CAS  PubMed  Google Scholar 

  67. Kashii, Y., Giorda, R., Herberman, R. B., Whiteside, T. L. & Vujanovic, N. L. Constitutive expression and role of the TNF family ligands in apoptotic killing of tumor cells by human NK cells. J. Immunol. 163, 5358–5366 (1999).

    CAS  PubMed  Google Scholar 

  68. Prevost-Blondel, A., Roth, E., Rosenthal, F. M. & Pircher, H. Crucial role of TNF-α in CD8 cell-mediated elimination of 3LL-A9 Lewis lung carcinoma cells in vivo. J. Immunol. 164, 3645–3651 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Baxevanis, C. N., Voutsas, I. F., Tsitsilonis, O. E., Tsiatas, D. G. & Papmichail, M. Compromised anti-tumor responses in tumor necrosis factor-α knockout mice. Eur. J. Immunol. 30, 1957–1966 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Calzascia, T. et al. TNF-α is critical for antitumor but not antiviral T cell immunity in mice. J. Clin. Invest. 117, 3833–3845 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Selby, P. et al. Tumour necrosis factor in man: clinical and biological observations. Br. J. Cancer 56, 803–808 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Creagan, E. T., Kovach, J. S., Moertel, C. G., Frytak, S. & Kvols, L. K. A phase 1 clinical trial of recombinant human tumor necrosis factor. Cancer 62, 2467–2471 (1988).

    Article  CAS  PubMed  Google Scholar 

  73. Kimura, K. et al. Phase 1 study of recombinant human tumor necrosis factor. Cancer Chemother. Pharmacol. 20, 223–229 (1987).

    Article  CAS  PubMed  Google Scholar 

  74. Blick, M., Sherwin, S. A., Rosenblum, M. & Gutterman, J. Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res. 47, 2986–2989 (1987).

    CAS  PubMed  Google Scholar 

  75. Morice, R. C., Blick, M. B., Ali, M. K. & Gutterman, J. U. Pulmonary toxicity of recombinant tumor necrosis factor (rTNF). Proc. Am. Soc. Clin. Oncol. 6, 29 (1987).

    Google Scholar 

  76. Verhoef, C. et al. Isolated limb perfusion with melphalan and TNF-α in the treatment of extremity sarcoma. Curr. Treat. Options Oncol. 8, 417–427 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Grunhagen, D. J. et al. Outcome and prognostic factor analysis of 217 consecutive isolated limb perfusions with tumor necrosis factor-α and melphalan for limb-threatening soft tissue sarcoma. Cancer 106, 1776–1784 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Starnes, C. O. Coley's toxins in perspective. Nature 357, 11–12 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Spriggs, D., Imamura, K., Rodriguez, C., Horiguchi, J. & Kufe, D. W. Induction of tumor necrosis factor expression and resistance in a human breast tumor cell line. Proc. Natl Acad. Sci. USA 84, 6563–6566 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Beissert, S. et al. Regulation of tumor necrosis factor gene expression in colorectal adenocarcinoma: In vivo analysis by in situ hybridization. Proc. Natl Acad. Sci. USA 86, 5064–5086 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Naylor, M. S., Malik, S. T. A., Stamp, G. W. H., Jobling, T. & Balkwill, F. R. In situ detection of tumour necrosis factor in human ovarian cancer specimens. Eur. J. Cancer 26, 1027–1030 (1990).

    Article  CAS  PubMed  Google Scholar 

  82. Naylor, M. S., Stamp, G. W. H., Foulkes, W. D., Eccles, D. & Balkwill, F. R. Tumor necrosis factor and its receptors in human ovarian cancer. J. Clin. Invest. 91, 2194–2206 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Karayiannakis, A. J. et al. Serum levels of tumor necrosis factor-alpha and nutritional status in pancreatic cancer patients. Anticancer Res. 21, 1355–1358 (2001).

    CAS  PubMed  Google Scholar 

  84. Yoshida, N. et al. Interleukin-6, tumour necrosis factor α and interleukin-1β in patients with renal cell carcinoma. Br. J. Cancer 86, 1396–1400 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ferrajoli, A. et al. The clinical significance of tumor necrosis factor-a plasma level in patients having chronic lymphocytic leukemia. Blood 100, 1215–1219 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Bozcuk, H. et al. Tumour necrosis factor-alpha, interleukin-6, and fasting serum insulin correlate with clinical outcome in metastatic breast cancer patients treated with chemotherapy. Cytokine 27, 58–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Anderson, G. M., Nakada, M. T. & DeWitte, M. Tumor necrosis factor-α in the pathogenesis and treatment of cancer. Curr. Opin. Pharmacol. 4, 314–320 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Pfitzenmaier, J. et al. Elevation of cytokine levels in cachectic patients with prostate carcinoma. Cancer 97, 1211–1216 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Michalaki, V., Syrigos, K., Charles, P. & Waxman, J. Serum levels of IL-6 and TNF-α correlate with clinicopathological features and patient survival in patients with prostate cancer. Br. J. Cancer 91, 1227 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  90. Frater-Schroder, M., Risau, W., Hallmann, R., Gautschi, P. & Bohlen, P. Tumor necrosis factor type α, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc. Natl Acad. Sci. USA 84, 5277–5281 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Leibovich, S. J. et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor alpha. Nature 329, 630–632 (1987).

    Article  CAS  PubMed  Google Scholar 

  92. Malik, S. T. A., Griffin, D. B., Fiers, W. & Balkwill, F. R. Paradoxical, effects of tumour necrosis factor in experimental ovarian cancer. Int. J. Cancer 44, 918–925 (1989).

    Article  CAS  PubMed  Google Scholar 

  93. Malik, S. T. A., Naylor, S., East, N., Oliff, A. & Balkwill, F. R. Cells secreting tumour necrosis factor show enhanced metastasis in nude mice. Eur. J. Cancer 26, 1031–1034 (1990).

    Article  CAS  PubMed  Google Scholar 

  94. Orosz, P. et al. Enhancement of experimental metastasis by tumor necrosis factor. J. Exp. Med. 177, 1391–1398 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Kim, S. et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102–106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNFα in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Virchow, R. Die krankhaften Geschwulste (1863).

    Google Scholar 

  98. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow. Lancet 357, 539–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Suganuma, M. et al. Essential role of tumor necrosis factor α (TNF-α) in tumor promotion as revealed by TNF-α-deficient mice. Cancer Res. 59, 4516–4518 (1999).

    CAS  PubMed  Google Scholar 

  102. Kulbe, H. et al. The inflammatory cytokine TNF-α generates an autocrine tumour-promoting network in epithelial ovarian cancer cells. Cancer Res. 67, 585–592 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Egberts, J.-H. et al. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 68, 1443–1450 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Stathopoulos, G. T. et al. Tumor necrosis factor-α promotes malignant pleural effusion. Cancer Res. 67, 9825–9834 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Zins, K., Abraham, D., Sioud, M. & Aharinejad, S. Colon cancer cell-derived tumor necrosis factor-α mediates the tumor growth-promoting response in macrophages by up-regulating the colony-stimulating factor-1 pathway. Cancer Res. 67, 1038–1045 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Li, B. et al. Low levels of tumor necrosis factor alpha increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site. Cancer Res. 69, 338–348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hagemann, T. et al. TNF-α dependent increased c-Jun and NF-κB activity in tumour cell lines upon co-cultivation with macrophages. J. Immunol. 175, 1197–1205 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Hagemann, T. et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J. Immunol. 176, 5023–5032 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Szlosarek, P. W. et al. Expression and regulation of tumor necrosis factor-α in normal and malignant ovarian epithelium. Mol. Cancer Ther. 5, 382–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Galban, S. et al. von Hippel–Lindau protein-mediated repression of tumor necrosis factor alpha translation revealed through use of cDNA arrays. Mol. Cell. Biol. 23, 2316–2328 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Suganuma, M., Kuzuhara, T., Yamaguchi, K. & Fujiki, H. Carcinogenic role of tumor necrosis factor-α inducing protein of Helicobacter pylori in human stomach. J. Biochem. Mol. Biol. 39, 1–8 (2006).

    CAS  PubMed  Google Scholar 

  112. Maeda, S., Kamata, H., Luo, J. L., Leffert, H. & Karin, M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Popivanova, B. K. et al. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest. 118, 560–570 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Oguma, K. et al. Activated macrophages promote Wnt signalling through tumour necrosis factor-α in gastic tumour cells. EMBO J. 27, 1671–1681 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Komori, A. et al. Tumor necrosis factor acts as a tumor promoter in BALB/3T3 cell transformation. Cancer Res. 53, 1982–1985 (1993).

    CAS  PubMed  Google Scholar 

  116. Li, J. et al. TNF-α induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. J. Clin. Invest. 117, 3283–3295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yan, B. et al. Tumor necrosis factor-α is a potent endogenous mutagen that promotes cellular transformation. Cancer Res. 66, 11565–11570 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Babbar, N. & Casero, R. A. Jr. Tumor necrosis factor-α increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis. Cancer Res. 66, 11125–11130 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Komori, J. et al. Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma. Hepatology 47, 888–896 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Akiyama, M. et al. Nuclear factor-κB p65 mediates tumor necrosis factor α-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res. 63, 18–21 (2003).

    CAS  PubMed  Google Scholar 

  121. Bates, R. C. & Mercurio, A. M. Tumor necrosis factor-α stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol. Biol. Cell 14, 1790–1800 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Arnott, C. H. et al. Expression of both TNF-a receptor subtypes is essential for optimal skin tumour development. Oncogene 23, 1902–1910 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Tomita, Y. et al. Spontaneous regression of lung metastasis in the absence of tumour necrosis factor p55. Int. J. Cancer 112, 927–933 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Kitakata, H. et al. Essential roles of tumor necrosis factor receptor p55 in liver metastasis of intrasplenic administration of colon 26 cells. Cancer Res. 62, 6682–6687 (2002).

    CAS  PubMed  Google Scholar 

  125. Curiel, T. J. Regulatory T cells and treatment of cancer. Curr. Opin. Immunol. 20, 241–246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen, X., Baumel, M., Mannel, D. N., Howard, O. M. Z. & Oppenheim, J. J. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J. Immunol. 179, 154–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Liu, Z.-G., Hsu, H., Goeddel, D. V. & Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87, 565–576 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Lee, D.-F. et al. IKKB suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130, 440–455 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Scott, K. A. et al. An anti-TNF-α antibody inhibits the development of experimental skin tumors. Mol. Cancer Ther. 2, 445–451 (2003).

    CAS  PubMed  Google Scholar 

  132. Rao, V. P. et al. Proinflammatory CD4+CD45RBhi lymphocytes promote mammary and intestinal carcinogenesis in ApcMin/+ mice. Cancer Res. 66, 57–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Stasi, R., Amadori, S., Newland, A. C. & Provan, D. Infliximab chimeric antitumor necrosis factor-a monoclonal antibody as potential treatment of myelodysplastic syndromes. Leuk. Lymphoma 46, 509–516 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Nadkarni, S., Mauri, C. & Ehrenstein, M. R. Anti-TNF-α therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-β. J. Exp. Med. 204, 33–39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zaba, L. C. et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 204, 3183–3194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Langowski, J. L. et al. IL-23 promotes tumour incidence and growth. Nature, 442, 461–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Fujiki, H. et al. New TNF-α releasing inhibitors as cancer preventive agents from traditional herbal medicine and combination cancer prevention study with EGCG and sulindac or tamoxifen. Mut. Res. 523, 119–125 (2003).

    Article  CAS  Google Scholar 

  138. Bongartz, T. et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies. JAMA 295, 2275–2285 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Askling, J. & Bongartz, T. Malignancy and biologic therapy in rheumatoid arthritis. Curr. Opin. Rheumatol. 20, 334–339 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Creagh, E. M. & O'Neill, L. A. J. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 27, 352–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Alexandroff, A. B., Jackson, A. M., O'Donnell, M. A. & James, K. BCG immunotherapy of bladder cancer: 20 years on. Lancet 353, 1689–1694 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Hagemann, T. et al. 'Re-educating' tumor-associated macrophages by targeting NF-κB. J. Exp. Med. 205, 1261–1268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Swann, J. B. et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc. Natl Acad. Sci. USA 105, 652–656 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Koebel, M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Senzer, N. et al. TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J. Clin. Oncol. 22, 592–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Mauceri, H. J. et al. Translational strategies exploiting TNF-α that sensitize tumors to radiation therapy. Cancer Gene Ther. 31 Oct 2008 (doi:10.1038/cgt.2008.86).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Krippner-Heidenreich, A. et al. Single chain TNF, a TNF derivative with enhanced stability and antitumoral activity. J. Immunol. 180, 8176–8183 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Petersen, S. L. et al. Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12, 445–456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Charles, P. et al. Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-α therapy in rheumatoid arthritis. J. Immunol. 163, 1521–1528 (1999).

    CAS  PubMed  Google Scholar 

  151. Gray-Schopfer, V. C., Karasarides, M., Hayward, R. & Marais, R. Tumor necrosis factor-α blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res. 67, 122–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Gordon, G. J. et al. Inhibitor of apoptosis proteins are regulated by tumour necrosis factor-a in malignant pleural mesothelioma. J. Pathol. 211, 439–446 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Varfolomeev, E. E. & Ashkenazi, A. Tumor necrosis factor: an apoptosis JuNKie? Cell 116, 491–497 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Aggarwal, B. B. Signalling pathways of the TNF superfamily: a double-edged sword. Nature Rev. Immunol. 3, 745–756 (2003).

    Article  CAS  Google Scholar 

  155. Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  156. Tsenova, L., Bergtold, A., Freedman, V. H., Young, R. A. & Kaplan, G. Tumour necrosis factor α is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system. Proc. Natl Acad. Sci. USA 96, 5657–5662 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schluter, D. et al. Both lymphotoxin-α and TNF are crucial for control of Toxoplasma gondii in the central nervous system. J. Immunol. 170, 6172–6182 (2003).

    Article  PubMed  Google Scholar 

  158. Pasparakis, M. et al. Peyer's patch organogenesis is intact yet formation of B lymphocyte follicles is defective in peripheral lymphoid organs of mice deficient for tumor necrosis factor and its 55-kDa receptor. Proc. Natl Acad. Sci. USA 94, 6319–6323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kuprash, D. V. et al. Novel tumor necrosis factor-knockout mice that lack Peyer's patches. Eur. J. Immunol. 35, 1592–1600 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Grivennikov, S. I. et al. Distinct and nonredundant in vivo functions of TNF produced by T cells and macrophages/neutrophils: protective and deleterious effects. Immunity 22, 93–104 (2005).

    CAS  PubMed  Google Scholar 

  161. Beutler, B. et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachetin. Nature 316, 552–554 (1985).

    Article  CAS  PubMed  Google Scholar 

  162. Brennan, F. M., Jackson, A., Chantry, D., Maini, R. & Feldmann, M. Inhibitory effect of TNF-alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2, 244–247 (1989).

    Article  CAS  PubMed  Google Scholar 

  163. Williams, R. O., Feldmann, M. & Maini, R. N. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc. Natl Acad. Sci. USA 89, 9784–9788 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. van Deventer, S. J. Anti-TNF antibody treatment of Crohn's disease. Ann. Rheum. Dis. 58, 14–20 (1999).

    Article  Google Scholar 

  165. Mease, P. J. et al. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet 356, 385–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Chaudhari, U. et al. Efficacy and safety of infliximab monotherapy for plaque-type psoriasis: a randomised trial. Lancet 357, 1842–1847 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Berry, M. A. et al. Evidence of a role of tumor necrosis factor α in refractory asthma. N. Engl. J. Med. 354, 697–708 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Ashkenazi, A. Targeting death and decoy receptors of the tumor necrosis factor superfamily. Nature Rev. Cancer 2, 420–430 (2002).

    Article  CAS  Google Scholar 

  169. Gray, P. W., Barret, K., Chantry, D., Turner, M. & Feldmann, M. Cloning of human tumor necrosis factor (TNF) receptor cDNA and expression of recombinant soluble TNF-binding protein. Proc. Natl Acad. Sci. USA 87, 7380–7384 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Heller, R. A. et al. Amplified expression of tumor necrosis factor receptor in cells transfected with Epstein–Barr virus shuttle vector cDNA libraries. J. Biol. Chem. 265, 5708–5717 (1990).

    Article  CAS  PubMed  Google Scholar 

  171. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank members of the Centre for Cancer and Inflammation at Barts and The London Medical School and also A. Mantovani for useful discussions and criticism.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

F.B. has funding from Ortho Biotech Oncology, who make the anti-TNF antibody infliximab. They currently fund a 1-year postdoctoral position in her laboratory.

Supplementary information

Supplementary information S1 (box)

TNF and TNF receptor superfamilies (PDF 116 kb)

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

actinomycin D

bevacizumab

doxorubicin

etanercept

infliximab

melphalan

mitomycin C

FURTHER INFORMATION

Frances Balkwill's homepage

MolMed

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balkwill, F. Tumour necrosis factor and cancer. Nat Rev Cancer 9, 361–371 (2009). https://doi.org/10.1038/nrc2628

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2628

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing