Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Emerging roles of ATF2 and the dynamic AP1 network in cancer

A Corrigendum to this article was published on 15 April 2010

Abstract

Cooperation among transcription factors is central for their ability to execute specific transcriptional programmes. The AP1 complex exemplifies a network of transcription factors that function in unison under normal circumstances and during the course of tumour development and progression. This Perspective summarizes our current understanding of the changes in members of the AP1 complex and the role of ATF2 as part of this complex in tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and regulation of JUN.
Figure 2: Mechanisms of JUN degradation.
Figure 3: Network of AP1 signalling.

Similar content being viewed by others

References

  1. Lee, W., Mitchell, P. & Tjian, R. Purified transcription factor AP1 interacts with TPA-inducible enhancer elements. Cell 49, 741–752 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Angel, P. et al. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49, 729–739 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Wisdom, R. AP1: One switch for many signals. Exp. Cell Res. 253, 180–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Eferl, R. & Wagner, E. F. AP1: a double-edged sword in tumorigenesis. Nature Rev. Cancer 3, 859–868 (2003).

    Article  CAS  Google Scholar 

  5. Angel, P. & Karin, M. The role of Jun, Fos and the AP1 complex in cell-proliferation and transformation. Biochem. Biophys. Acta 1072, 129–157 (1991).

    CAS  PubMed  Google Scholar 

  6. Vlahopoulos, S. A. et al. The role of ATF-2 in oncogenesis. Bioessays 30, 314–327 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Maki, Y., Bos, C., Davis, C., Starbuck, M. & Vogt, P. Avian sarcoma virus 17 carries the jun oncogene. Proc. Natl Acad. Sci. USA 84, 2848–2852 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vogt, P. K. Jun, the oncoprotein. Oncogene 20, 2365–2377 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Eferl, R. et al. Functions of c-Jun in liver and heart development. J. Cell Biol. 145, 1049–1061 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mechta-Grigoriou, F., Gerald, D. & Yaniv, M. The mammalian Jun proteins: redundancy and specificity. Oncogene 20, 2378–2389 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Bakiri, L., Lallemand, D., Bossy-Wetzel, E. & Yaniv, M. Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J. 19, 2056–2068 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mariani, O. et al. JUN Oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell 11, 361–374 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Shaulian, E. & Karin, M. AP1 in cell proliferation and survival. Oncogene 20, 2390–2400 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Angel, P., Hattori, K., Smeal, T. & Karin, M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP1. Cell 55, 875–885 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. van Dam, H. & Castellazzi, M. Distinct roles of Jun:Fos and Jun:ATF dimers in oncogenesis. Oncogene 20, 2453–2464 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Sng, J. C. G., Taniura, H. & Yoneda, Y. A tale of early response genes. Biol. Pharm. Bull. 27, 606–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Whitmarsh, A. J. & Davis, R. J. Regulation of transcription factor function by phosphorylation. Cell. Mol. Life Sci. 57, 1172–1183 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Katabami, M. et al. Cyclin A is a c-Jun target gene and is necessary for c-Jun-induced anchorage-independent growth in RAT1a cells. J. Biol. Chem. 280, 16728–16738 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Weitzman, J. B., Fiette, L., Matsuo, K. & Yaniv, M. JunD protects cells from p53-dependent senescence and apoptosis. Mol. Cell 6, 1109–1119 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Schreiber, M. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev. 13, 607–619 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ameyar-Zazoua, M. et al. AP1 dimers regulate transcription of the p14/p19ARF tumor suppressor gene. Oncogene 24, 2298–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Deng, T. & Karin, M. JunB differs from c-Jun in its DNA-binding and dimerization domains, and represses c-Jun by formation of inactive heterodimers. Genes Dev. 7, 479–490 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Aggarwal, B. B. & Gehlot, P. Inflammation and cancer: how friendly is the relationship for cancer patients? Curr. Opin. Pharmacol. 9, 351–369 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Passegue, E. & Wagner, E. F. JunB suppresses cell proliferation by transcriptional activation of p16INK4a expression. EMBO J. 19, 2969–2979 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ryseck, R. P., Hirai, S. I., Yaniv, M. & Bravo, R. Transcriptional activation of c-jun during the G0/G1 transition in mouse fibroblasts. Nature 334, 535–537 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Mayo, M. W., Steelman, L. S. & McCubrey, J. A. Phorbol esters support the proliferation of a hematopoietic cell line by upregulating c-jun expression. Oncogene 9, 1999–2008 (1994).

    CAS  PubMed  Google Scholar 

  27. Zhang, Y. et al. Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model. BMC Cancer 7, 145 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jin, X. et al. Blockade of AP1 activity by dominant-negative TAM67 can abrogate the oncogenic phenotype in latent membrane protein 1-positive human nasopharyngeal carcinoma. Mol. Carcinog. 46, 901–911 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Shimizu, Y. et al. Growth inhibition of non-small cell lung cancer cells by AP1 blockade using a cJun dominant-negative mutant. Br. J. Cancer 98, 915–922 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shen, Q. et al. The AP1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene 27, 366–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Suto, R. et al. Dominant-negative mutant of c-Jun gene transfer: a novel therapeutic strategy for colorectal cancer. Gene Therapy 11, 187–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Passegue, E., Jochum, W., Behrens, A., Ricci, R. & Wagner, E. F. JunB can substitute for Jun in mouse development and cell proliferation. Nature Genet. 30, 158–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Agarwal, S. K. et al. Transcription factor JunD, deprived of menin, switches from growth suppressor to growth promoter. Proc. Natl Acad. Sci. USA 100, 10770–10775 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Laine, A. & Ronai, Z. Ubiquitin chains in the ladder of MAPK signaling. Sci. STKE 281, re5 (2005).

    Google Scholar 

  35. Dérijard, B. et al. JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037 (1994).

    Article  PubMed  Google Scholar 

  36. Sabapathy, K. et al. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol. Cell 15, 713–725 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Sabapathy, K. & Wagner, E. F. JNK2: a negative regulator of cellular proliferation. Cell Cycle 3, 1520–1523 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Lively, T. N., Ferguson, H. A., Galasinski, S. K., Seto, A. G. & Goodrich, J. A. c-Jun binds the N terminus of Human TAFII250 to derepress RNA polymerase II transcription in vitro. J. Biol. Chem. 276, 25582–25588 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Franklin, C. C., McCulloch, A. V. & Kraft, A. S. In vitro association between the Jun protein family and the general transcription factors, TBP and TFIIB. Biochem. J. 305, 967–974 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karin, M., Liu, Z. G. & Zandi, E. AP1 function and regulation. Curr. Opin. Cell Biol. 9, 240–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Weiss, C. et al. JNK phosphorylation relieves HDAC3-dependent suppression of the transcriptional activity of c-Jun. EMBO J. 22, 3686–3695 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kallunki, T., Deng, T., Hibi, M. & Karin, M. c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell 87, 929–939 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Gallo, A. et al. Menin uncouples Elk-1, JunD and c-Jun phosphorylation from MAP kinase activation. Oncogene 21, 6434–6445 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Lopez-Bergami, P. et al. Rewired ERK-JNK signaling pathways in melanoma. Cancer Cell 11, 447–460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morton, S., Davis, R. J., McLaren, A. & Cohen, P. A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun. EMBO J. 22, 3876–3886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhoumik, A. & Ronai, Z. ATF2: a transcription factor that elicits oncogenic or tumor suppressor activities. Cell Cycle 7, 2341–2345 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Wei, W., Jin, J., Schlisio, S., Harper, J. W. & Kaelin, W. G. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8, 25–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Nateri, A. S., Riera-Sans, L., Da Costa, C. & Behrens, A. The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science 303, 1374–1378 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Fuchs, S. Y., Dolan, L., Davis, R. J. & Ronai, Z. Phosphorylation-dependent targeting of c-Jun ubiquitination by Jun N-kinase. Oncogene 13, 1531–1535 (1996).

    CAS  PubMed  Google Scholar 

  51. Bossis, G. et al. Down-regulation of c-Fos/c-Jun AP1 dimer activity by sumoylation. Mol. Cell. Biol. 25, 6964–6979 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng, J., Perkins, N. D. & Yeh, E. T. Differential regulation of c-Jun-dependent transcription by SUMO-specific proteases. J. Biol. Chem. 280, 14492–14498 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Farras, R., Bossis, G., Andermarcher, E., Jariel-Encontre, I. & Piechaczyk, M. Mechanisms of delivery of ubiquitylated proteins to the proteasome: new target for anti-cancer therapy? Crit. Rev. Oncol. Hematol. 54, 31–51 (2005).

    Article  PubMed  Google Scholar 

  54. Garaude, J. et al. SUMOylation regulates the transcriptional activity of JunB in T lymphocytes. J. Immunol. 180, 5983–5990 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Musti, A. M., Treier, M., Peverali, F. A. & Bohmann, D. Differential regulation of c-Jun and JunD by ubiquitin-dependent protein degradation. Biol. Chem. 377, 619–624 (1996).

    CAS  PubMed  Google Scholar 

  56. Tulchinsky, E. Fos family members: regulation, structure and role in oncogenic transformation. Histol. Histopathol. 15, 921–928 (2000).

    CAS  PubMed  Google Scholar 

  57. Halazonetis, T. D., Georgopoulos, K., Greenberg, M. E. & Leder, P. c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 55, 917–924 (1988).

    Article  CAS  PubMed  Google Scholar 

  58. Greenberg, M. E. & Ziff, E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311, 433–438 (1984).

    Article  CAS  PubMed  Google Scholar 

  59. Kovary, K. & Bravo, R. The jun and fos protein families are both required for cell cycle progression in fibroblasts. Mol. Cell. Biol. 11, 4466–4472 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Adiseshaiah, P., Peddakama, S., Zhang, Q., Kalvakolanu, D. V. & Reddy, S. P. Mitogen regulated induction of FRA-1 proto-oncogene is controlled by the transcription factors binding to both serum and TPA response elements. Oncogene 24, 4193–4205 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Basbous, J., Jariel-Encontre, I., Gomard, T., Bossis, G. & Piechaczyk, M. Ubiquitin-independent- versus ubiquitin-dependent proteasomal degradation of the c-Fos and Fra-1 transcription factors: is there a unique answer? Biochimie 90, 296–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Pellegrino, M. J. & Stork, P. J. Sustained activation of extracellular signal-regulated kinase by nerve growth factor regulates c-fos protein stabilization and transactivation in PC12 cells. J. Neurochem. 99, 1480–1493 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Tanos, T. et al. Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP1 response to UV light. J. Biol. Chem. 280, 18842–18852 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Basbous, J., Chalbos, D., Hipskind, R., Jariel-Encontre, I. & Piechaczyk, M. Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer. Mol. Cell. Biol. 27, 3936–3950 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Malnou, C. E. et al. Heterodimerization with Jun family members regulates c-Fos nucleocytoplasmic traffic. J. Biol. Chem. 282, 31046–31059 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Hai, T. & Hartman, M. G. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Bhoumik, A., Lopez-Bergami, P. & Ronai, Z. ATF2 on the double — activating transcription factor and DNA damage response protein. Pigment Cell Res. 20, 498–506 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Breitwieser, W. et al. Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells. Genes Dev. 21, 2069–2082 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takeda, J. et al. Expression of the CRE-BP1 transcriptional regulator binding to the cyclic AMP response element in central nervous system, regenerating liver, and human tumors. Oncogene 6, 1009–1014 (1991).

    CAS  PubMed  Google Scholar 

  70. Kim, H. S., Choi, E. S., Shin, J. A., Jang, Y. K. & Park, S. D. Regulation of Swi6/HP1-dependent heterochromatin assembly by cooperation of components of the mitogen-activated protein kinase pathway and a histone deacetylase Clr6. J. Biol. Chem. 279, 42850–42859 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Bruhat, A. et al. ATF2 is required for amino acid-regulated transcription by orchestrating specific histone acetylation. Nucleic Acids Res. 35, 1312–1321 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Agelopoulos, M. & Thanos, D. Epigenetic determination of a cell-specific gene expression program by ATF-2 and the histone variant macroH2A. EMBO J. 25, 4843–4853 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Maekawa, T. et al. Mouse ATF-2 null mutants display features of a severe type of meconium aspiration syndrome. J. Biol. Chem. 274, 17813–17819 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Papassava, P. et al. Overexpression of activating transcription factor-2 is required for tumor growth and progression in mouse skin tumors. Cancer Res. 64, 8573–8584 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Zoumpourlis, V. et al. High levels of phosphorylated c-Jun, Fra-1, Fra-2 and ATF-2 proteins correlate with malignant phenotypes in the multistage mouse skin carcinogenesis model. Oncogene 19, 4011–4021 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Woo, I. S., Kohno, T., Inoue, K., Ishii, S. & Yokota, J. Infrequent mutations of the activating transcription factor-2 gene in human lung cancer, neuroblastoma and breast cancer. Int. J. Oncol. 20, 527–531 (2002).

    CAS  PubMed  Google Scholar 

  77. Maekawa, T. et al. Reduced levels of ATF-2 predispose mice to mammary tumors. Mol. Cell. Biol. 27, 1730–1744 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Song, H., Ki, S. H., Kim, S. G. & Moon, A. Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res. 66, 10487–10496 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Reimold, A. M. et al. Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature 379, 262–265 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Ozawa, K., Sudo, T., Soeda, E., Yoshida, M. C. & Ishii, S. Assignment of the human CREB2 (CRE-BP1) gene to 2q32. Genomics 10, 1103–1104 (1991).

    Article  CAS  PubMed  Google Scholar 

  81. Landschulz, W. H., Johnson, P. F. & McKnight, S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764 (1988).

    Article  CAS  PubMed  Google Scholar 

  82. Liu, H. et al. Mutual regulation of c-Jun and ATF2 by transcriptional activation and subcellular localization. EMBO J. 25, 1058–1069 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, X. Y. & Green, M. R. Intramolecular inhibition of activating transcription factor-2 function by its DNA-binding domain. Genes Dev. 10, 517–527 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Ouwens, D. M. et al. Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. EMBO J. 21, 3782–3793 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gupta, S., Campbell, D., Derijard, B. & Davis, R. J. Transcription factor ATF2: regulation by the JNK signal transduction pathway. Science 267, 389–393 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Firestein, R. & Feuerstein, N. Association of activating transcription factor 2 (ATF2) with the ubiquitin-conjugating enzyme hUBC9. Implication of the ubiquitin/proteasome pathway in regulation of ATF2 in T cells. J. Biol. Chem. 273, 5892–5902 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Fuchs, S. Y. & Ronai, Z. Ubiquitination and degradation of ATF2 are dimerization dependent. Mol. Cell. Biol. 19, 3289–3298 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fuchs, S. Y., Tappin, I. & Ronai, Z. Stability of the ATF2 transcription factor is regulated by phosphorylation and dephosphorylation. J. Biol. Chem. 275, 12560–12564 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Bhoumik, A. et al. ATM-dependent phosphorylation of ATF2 is required for the DNA damage response. Mol. Cell 18, 577–587 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yamasaki, T., Takahashi, A., Pan, J., Yamaguchi, N. & Yokoyama, K. K. Phosphorylation of activation transcription factor-2 at serine 121 by protein kinase C controls c-Jun-mediated activation of transcription. J. Biol. Chem. 284, 8567–8581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hai, T. W., Liu, F., Coukos, W. J. & Green, M. R. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3, 2083–2090 (1989).

    Article  CAS  PubMed  Google Scholar 

  92. Kerppola, T. K. & Curran, T. Selective DNA bending by a variety of bZIP proteins. Mol. Cell. Biol. 13, 5479–5489 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ronai, Z. et al. ATF2 confers radiation resistance to human melanoma cells. Oncogene 16, 523–531 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Ma, Q. et al. Activating transcription factor 2 controls Bcl-2 promoter activity in growth plate chondrocytes. J. Cell Biochem. 101, 477–487 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Zenz, R. et al. c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. Dev. Cell 4, 879–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Shaulian, E. & Karin, M. AP1 as a regulator of cell life and death. Nature Cell Biol. 4, E131–E136 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Johnson, R., Spiegelman, B., Hanahan, D. & Wisdom, R. Cellular transformation and malignancy induced by ras require c-jun. Mol. Cell. Biol. 16, 4504–4511 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Behrens, A., Jochum, W., Sibilia, M. & Wagner, E. F. Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene 19, 2657–2663 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Binetruy, B., Smeal, T. & Karin, M. Ha-Ras augments c-Jun activity and stimulates phosphorylation of its activation domain. Nature 351, 122–127 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Talotta, F. et al. An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP1 activity in RAS transformation. Oncogene 28, 73–84 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Milde-Langosch, K. The Fos family of transcription factors and their role in tumourigenesis. Eur. J. Cancer 41, 2449–2461 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Bergers, G., Graninger, P., Braselmann, S., Wrighton, C. & Busslinger, M. Transcriptional activation of the fra-1 gene by AP1 is mediated by regulatory sequences in the first intron. Mol. Cell. Biol. 15, 3748–3758 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jenuwein, T. & Muller, R. Structure-function analysis of fos protein: a single amino acid change activates the immortalizing potential of v-fos. Cell 48, 647–657 (1987).

    Article  CAS  PubMed  Google Scholar 

  104. Sunters, A., McCluskey, J. & Grigoriadis, A. E. Control of cell cycle gene expression in bone development and during c-Fos-induced osteosarcoma formation. Dev. Genet. 22, 386–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Ledwith, B. J., Manam, S., Kraynak, A. R., Nichols, W. W. & Bradley, M. O. Antisense-fos RNA causes partial reversion of the transformed phenotypes induced by the c-Ha-ras oncogene. Mol. Cell. Biol. 10, 1545–1555 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Olive, M. et al. A dominant negative to activation protein-1 (AP1) that abolishes DNA binding and inhibits oncogenesis. J. Biol. Chem. 272, 18586–18594 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Jochum, W. et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature Med. 6, 980–984 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Mikula, M. et al. The proto-oncoprotein c-Fos negatively regulates hepatocellular tumorigenesis. Oncogene 22, 6725–6738 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Graves, M. L., Zhou, L., MacDonald, G., Mueller, C. R. & Roskelley, C. D. Regulation of the BRCA1 promoter in ovarian surface epithelial cells and ovarian carcinoma cells. FEBS Lett. 581, 1825–1833 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Abbas, S. et al. Preclinical studies of celastrol and acetyl isogambogic acid in melanoma. Clin. Cancer Res. 13, 6769–6778 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bhoumik, A., Jones, N. & Ronai, Z. Transcriptional switch by activating transcription factor 2-derived peptide sensitizes melanoma cells to apoptosis and inhibits their tumorigenicity. Proc. Natl Acad. Sci. USA 101, 4222–4227 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vale-Cruz, D. S., Ma, Q., Syme, J. & LuValle, P. A. Activating transcription factor-2 affects skeletal growth by modulating pRb gene expression. Mech. Dev. 125, 843–856 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Nakamura, T. et al. Down-regulation of the cyclin A promoter in differentiating human embryonal carcinoma cells is mediated by depletion of ATF-1 and ATF-2 in the complex at the ATF/CRE site. Exp. Cell Res. 216, 422–430 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Beier, F., Taylor, A. C. & LuValle, P. Activating transcription factor 2 is necessary for maximal activity and serum induction of the cyclin A promoter in chondrocytes. J. Biol. Chem. 275, 12948–12953 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Bhoumik, A. et al. Suppressor role of activating transcription factor 2 (ATF2) in skin cancer. Proc. Natl Acad. Sci. USA 105, 1674–1679 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Maekawa, T. et al. ATF-2 controls transcription of Maspin and GADD45α genes independently from p53 to suppress mammary tumors. Oncogene 27, 1045–1054 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Chen, S. Y. et al. Overexpression of phosphorylated-ATF2 and STAT3 in cutaneous squamous cell carcinoma, Bowen's disease and basal cell carcinoma. J. Dermatol. Sci. 51, 210–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Knippen, S. et al. Expression and prognostic value of activating transcription factor 2 (ATF2) and its phosphorylated form in mammary carcinomas. Anticancer Res. 29, 183–189 (2009).

    CAS  PubMed  Google Scholar 

  119. Lewis, J. S. et al. Activation of cyclin D1 by estradiol and spermine in MCF-7 breast cancer cells: a mechanism involving the p38 MAP kinase and phosphorylation of ATF-2. Oncol. Res. 15, 113–128 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Berger, A. J. et al. Subcellular localization of activating transcription factor 2 in melanoma specimens predicts patient survival. Cancer Res. 63, 8103–8107 (2003).

    CAS  PubMed  Google Scholar 

  121. Deng, X. et al. Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: implications for disease progression. Cancer Res. 68, 9663–9670 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Daury, L. et al. Opposing functions of ATF2 and Fos-like transcription factors in c-Jun-mediated myogenin expression and terminal differentiation of avian myoblasts. Oncogene 20, 7998–8008 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Chu, M., Guo, J. & Chen, C. Y. Long-term exposure to nicotine, via ras pathway, induces cyclin D1 to stimulate G1 cell cycle transition. J. Biol. Chem. 280, 6369–6379 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Manna, S. K. et al. Long term environmental tobacco smoke activates nuclear transcription factor-κB, activator protein-1 and stress responsive kinases in mouse brain. Biochem. Pharmacol. 71, 1602–1609 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Heintz, N. H., Janssen, Y. M. & Mossman, B. T. Persistent induction of c-fos and c-jun expression by asbestos. Proc. Natl Acad. Sci. USA 90, 3299–3303 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Janssen, Y. M., Heintz, N. H., Marsh, J. P., Borm, P. J. & Mossman, B. T. Induction of c-fos and c-jun proto-oncogenes in target cells of the lung and pleura by carcinogenic fibers. Am. J. Respir. Cell. Mol. Biol. 11, 522–530 (1994).

    Article  CAS  PubMed  Google Scholar 

  127. Fried, U., Kotarsky, K. & Alling, C. Chronic ethanol exposure enhances activating protein-1 transcriptional activity in human neuroblastoma cells. Alcohol 24, 189–195 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Matthews, C. P. et al. Dominant-negative activator protein 1 (TAM67) targets cyclooxygenase-2 and osteopontin under conditions in which it specifically inhibits tumorigenesis. Cancer Res. 67, 2430–2438 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Young, M. R. et al. Transgenic mice demonstrate AP1 (activator protein-1) transactivation is required for tumor promotion. Proc. Natl Acad. Sci. USA 96, 9827–9832 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Astruc, M. E., Chabret, C., Bali, P., Gagne, D. & Pons, M. Prolonged treatment of breast cancer cells with antiestrogens increases the activating protein-1-mediated response: involvement of the estrogen receptor. Endocrinology 136, 824–832 (1995).

    Article  CAS  PubMed  Google Scholar 

  131. Brozovic, A. et al. Long-term activation of SAPK/JNK, p38 kinase and fas-L expression by cisplatin is attenuated in human carcinoma cells that acquired drug resistance. Int. J. Cancer 112, 974–985 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Ozanne, B. W., Spence, H. J., McGarry, L. C. & Hennigan, R. F. Transcription factors control invasion: AP1 the first among equals. Oncogene 26, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Maeno, K. et al. Altered regulation of c-jun and its involvement in anchorage-independent growth of human lung cancers. Oncogene 25, 271–277 (2005).

    Article  CAS  Google Scholar 

  134. Shiratsuchi, T., Ishibashi, H. & Shirasuna, K. Inhibition of epidermal growth factor-induced invasion by dexamethasone and AP1 decoy in human squamous cell carcinoma cell lines. J. Cell Physiol. 193, 340–348 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Katiyar, S., Jiao, X., Wagner, E., Lisanti, M. P. & Pestell, R. G. Somatic excision demonstrates that c-Jun induces cellular migration and invasion through induction of stem cell factor. Mol. Cell. Biol. 27, 1356–1369 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Hommura, F. et al. HMG-I/Y is a c-Jun/activator protein-1 target gene and is necessary for c-Jun-induced anchorage-independent growth in Rat1a cells. Mol. Cancer Res. 2, 305–314 (2004).

    CAS  PubMed  Google Scholar 

  137. Kinoshita, I. et al. Identification of cJun-responsive genes in Rat-1a cells using multiple techniques: Increased expression of stathmin is necessary for cJun-mediated anchorage-independent growth. Oncogene 22, 2710–2722 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Jooss, K. U. & Muller, R. Deregulation of genes encoding microfilament-associated proteins during Fos-induced morphological transformation. Oncogene 10, 603–608 (1995).

    CAS  PubMed  Google Scholar 

  139. Westermarck, J. et al. Activation of fibroblast collagenase-1 expression by tumor cells of squamous cell carcinomas is mediated by p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase-2. Cancer Res. 60, 7156–7162 (2000).

    CAS  PubMed  Google Scholar 

  140. Reichmann, E. et al. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell 71, 1103–1116 (1992).

    Article  CAS  PubMed  Google Scholar 

  141. Belguise, K., Kersual, N., Galtier, F. & Chalbos, D. FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells. Oncogene 24, 1434–1444 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Ramos-Nino, M. E., Scapoli, L., Martinelli, M., Land, S. & Mossman, B. T. Microarray analysis and RNA silencing link fra-1 to cd44 and c-met expression in mesothelioma. Cancer Res. 63, 3539–3545 (2003).

    CAS  PubMed  Google Scholar 

  143. Chen, S. Y. et al. Concordant overexpression of phosphorylated ATF2 and STAT3 in extramammary Paget's disease. J. Cutan. Pathol. 36, 402–408 (2009).

    Article  PubMed  Google Scholar 

  144. Jean, D. & Bar-Eli, M. Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factor family. Mol. Cell Biochem. 212, 19–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Vleugel, M. M., Greijer, A. E., Bos, R., van der Wall, E. & van Diest, P. J. c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum. Pathol. 37, 668–674 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Zhang, G. et al. Effect of deoxyribzymes targeting c-Jun on solid tumor growth and angiogenesis in rodents. J. Natl Cancer Inst. 96, 683–696 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, G. et al. Squamous cell carcinoma growth in mice and in culture is regulated by c-Jun and its control of matrix metalloproteinase-2 and -9 expression. Oncogene 25, 7260–7266 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Bowden, G. T., Schneider, B., Domann, R. & Kulesz-Martin, M. Oncogene activation and tumor suppressor gene inactivation during multistage mouse skin carcinogenesis. Cancer Res. 54, 1882–1885 (1994).

    Google Scholar 

  149. Toft, D. J., Rosenberg, S. B., Bergers, G., Volpert, O. & Linzer, D. I. H. Reactivation of proliferin gene expression is associated with increased angiogenesis in a cell culture model of fibrosarcoma tumor progression. Proc. Natl Acad. Sci. USA 98, 13055–13059 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ming, J., Zhang, Q., Qiu, X. & Wang, E. Interleukin 7/interleukin 7 receptor induce c-Fos/c-Jun-dependent vascular endothelial growth factor-D up-regulation: a mechanism of lymphangiogenesis in lung cancer. Eur. J. Cancer 45, 866–873 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Ham, J. et al. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14, 927–939 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Wang, N. et al. c-Jun triggers apoptosis in human vascular endothelial cells. Circ. Res. 85, 387–393 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Podar, K. et al. Up-regulation of c-Jun inhibits proliferation and induces apoptosis via caspase-triggered c-Abl cleavage in human multiple myeloma. Cancer Res. 67, 1680–1688 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Bossy-Wetzel, E., Bakiri, L. & Yaniv, M. Induction of apoptosis by the transcription factor c-Jun. EMBO J. 16, 1695–1709 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hettinger, K. et al. c-Jun promotes cellular survival by suppression of PTEN. Cell Death Differ. 14, 218–229 (2006).

    Article  PubMed  CAS  Google Scholar 

  156. Eferl, R. et al. Liver Tumor development: c-Jun antagonizes the proapoptotic activity of p53. Cell 112, 181–192 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Stepniak, E. et al. c-Jun/AP1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes Dev. 20, 2306–2314 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kalra, N. & Kumar, V. c-Fos is a mediator of the c-myc-induced apoptotic signaling in serum-deprived hepatoma cells via the p38 mitogen-activated protein kinase pathway. J. Biol. Chem. 279, 25313–25319 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Siegmund, D. et al. Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway. J. Biol. Chem. 276, 32585–32590 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Kustikova, O. et al. Fra-1 induces morphological transformation and increases in vitro invasiveness and motility of epithelioid adenocarcinoma cells. Mol. Cell. Biol. 18, 7095–7105 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Shirsat, N. V. & Shaikh, S. A. Overexpression of the immediate early gene fra-1 inhibits proliferation, induces apoptosis, and reduces tumourigenicity of c6 glioma cells. Exp. Cell Res. 291, 91–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Jochum, W., Passegue, E. & Wagner, E. F. AP1 in mouse development and tumorigenesis. Oncogene 20, 2401–2412 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Leppa, S., Eriksson, M., Saffrich, R., Ansorge, W. & Bohmann, D. Complex functions of AP1 transcription factors in differentiation and survival of PC12 cells. Mol. Cell. Biol. 21, 4369–4378 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Behrens, A., Sibilia, M. & Wagner, E. F. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nature Genet. 21, 326–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Yuan, Z. et al. Opposing roles for ATF2 and c-Fos in c-Jun-mediated neuronal apoptosis. Mol. Cell. Biol. (2009).

  166. Li, W., Zhang, X. & Olumi, A. F. MG-132 sensitizes TRAIL-resistant prostate cancer cells by activating c-Fos/c-Jun heterodimers and repressing c-FLIPL . Cancer Res. 67, 2247–2255 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Adunyah, S. E., Chander, R., Barner, V. K., Cooper, R. S. & Copper, R. S. Regulation of c-jun mRNA expression by hydroxyurea in human K562 cells during erythroid differentiation. Biochim. Biophys. Acta 1263, 123–132 (1995).

    Article  PubMed  Google Scholar 

  168. Santaguida, M. et al. JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 15, 341–352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hilberg, F., Aguzzi, A., Howells, N. & Wagner, E. F. c-jun is essential for normal mouse development and hepatogenesis. Nature 365, 179–181 (1993).

    Article  CAS  PubMed  Google Scholar 

  170. Wo, Y., Zhu, D., Yu, Y. & Lou, Y. Involvement of NF-κB and AP1 activation in icariin promoted cardiac differentiation of mouse embryonic stem cells. Eur. J. Pharmacol. 586, 59–66 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Okuda, A. et al. UTF1, a novel transcriptional coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells. EMBO J. 17, 2019–2032 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rapp, U. R., Troppmair, J., Beck, T. & Birrer, M. J. Transformation by Raf and other oncogenes renders cells differentially sensitive to growth inhibition by a dominant negative c-jun mutant. Oncogene 9, 3493–3498 (1994).

    CAS  PubMed  Google Scholar 

  173. Mathas, S. et al. Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-κB. EMBO J. 21, 4104–4113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Drakos, E. et al. c-Jun expression and activation are restricted to CD30+ lymphoproliferative disorders. Am. J. Surg. Pathol. 31, 447–453 (2007).

    Article  PubMed  Google Scholar 

  175. Ouyang, X. et al. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res. 68, 2132–2144 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Mahner, S. et al. C-Fos expression is a molecular predictor of progression and survival in epithelial ovarian carcinoma. Br. J. Cancer 99, 1269–1275 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jin, S. P. et al. Prognostic significance of loss of c-fos protein in gastric carcinoma. Pathol. Oncol. Res. 13, 284–289 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Young, M. R. & Colburn, N. H. Fra-1 a target for cancer prevention or intervention. Gene 379, 1–11 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. Ramirez-Carrozzi, V. & Kerppola, T. Asymmetric recognition of nonconsensus AP1 sites by Fos-Jun and Jun-Jun influences transcriptional cooperativity with NFAT1. Mol. Cell. Biol. 23, 1737–1749 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Huguier, S., Baguet, J., Perez, S., van Dam, H. & Castellazzi, M. Transcription factor ATF2 cooperates with v-Jun to promote growth factor-independent proliferation in vitro and tumor formation in vivo. Mol. Cell. Biol. 18, 7020–7029 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. van Dam, H. et al. Autocrine growth and anchorage independence: two complementing Jun-controlled genetic programs of cellular transformation. Genes Dev. 12, 1227–1239 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Sunters, A., Thomas, D. P., Yeudall, W. A. & Grigoriadis, A. E. Accelerated cell cycle progression in osteoblasts overexpressing the c-fos proto-oncogene: induction of cyclin A and enhanced CDK2 activity. J. Biol. Chem. 279, 9882–9891 (2004).

    Article  PubMed  Google Scholar 

  183. Chalmers, C. J., Gilley, R., March, H. N., Balmanno, K. & Cook, S. J. The duration of ERK1/2 activity determines the activation of c-Fos and Fra-1 and the composition and quantitative transcriptional output of AP1. Cell Signal 19, 695–704 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. De Cesare, D. et al. Heterodimerization of c-Jun with ATF-2 and c-Fos is required for positive and negative regulation of the human urokinase enhancer. Oncogene 11, 365–376 (1995).

    CAS  PubMed  Google Scholar 

  185. Lemaigre, F. P., Ace, C. I. & Green, M. R. The cAMP response element binding protein, CREB, is a potent inhibitor of diverse transcriptional activators. Nucleic Acids Res. 21, 2907–2911 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Rutberg, S. E. et al. CRE DNA binding proteins bind to the AP1 target sequence and suppress AP1 transcriptional activity in mouse keratinocytes. Oncogene 18, 1569–1579 (1999).

    Article  CAS  PubMed  Google Scholar 

  187. Chiu, R., Angel, P. & Karin, M. JunB differs in its biological properties from, and is a negative regulator of c-Jun. Cell 59, 979–986 (1989).

    Article  CAS  PubMed  Google Scholar 

  188. Mechta, F., Lallemand, D., Pfarr, C. M. & Yaniv, M. Transformation by ras modifies AP1 composition and activity. Oncogene 14, 837–847 (1997).

    Article  CAS  PubMed  Google Scholar 

  189. Flint, K. J. & Jones, N. C. Differential regulation of three members of the ATF/CREB family of DNA-binding proteins. Oncogene 6, 2019–2026 (1991).

    CAS  PubMed  Google Scholar 

  190. Hagmeyer, B. M., Angel, P. & van Dam, H. Modulation of AP1/ATF transcription factor activity by the adenovirus-E1A oncogene products. Bioessays 17, 621–629 (1995).

    Article  CAS  PubMed  Google Scholar 

  191. Pospelova, T. V. et al. E1A+ cHa-ras transformed rat embryo fibroblast cells are characterized by high and constitutive DNA binding activities of AP1 dimers with significantly altered composition. Gene Expr 8, 19–32 (1999).

    CAS  PubMed  Google Scholar 

  192. Abdel-Hafiz, H. A., Chen, C. Y., Marcell, T., Kroll, D. J. & Hoeffler, J. P. Structural determinants outside of the leucine zipper influence the interactions of CREB and ATF-2: interaction of CREB with ATF-2 blocks E1a-ATF-2 complex formation. Oncogene 8, 1161–1174 (1993).

    CAS  PubMed  Google Scholar 

  193. Chinenov, Y. & Kerppola, T. K. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 20, 2438–2452 (2001).

    Article  CAS  PubMed  Google Scholar 

  194. Kara, C. J., Liou, H. C., Ivashkiv, L. B. & Glimcher, L. H. A cDNA for a human cyclic AMP response element-binding protein which is distinct from CREB and expressed preferentially in brain. Mol. Cell. Biol. 10, 1347–1357 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Georgopoulos, K., Morgan, B. A. & Moore, D. D. Functionally distinct isoforms of the CRE-BP DNA-binding protein mediate activity of a T-cell-specific enhancer. Mol. Cell. Biol. 12, 747–757 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Bailey, J. & Europe-Finner, G. N. Identification of human myometrial target genes of the c-Jun NH2-terminal kinase (JNK) pathway: the role of activating transcription factor 2 (ATF2) and a novel spliced isoform ATF2-small. J. Mol. Endocrinol. 34, 19–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Ransone, L. J. & Verma, I. M. Nuclear proto-oncogenes fos and jun. Annu. Rev. Cell Biol. 6, 539–557 (1990).

    Article  CAS  PubMed  Google Scholar 

  198. Wei, W., Jin, J., Schlisio, S., Harper, J. W. & Kaelin, J. W. G. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8, 25–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Huang, C. C. et al. Calcineurin-mediated dephosphorylation of c-Jun Ser-243 is required for c-Jun protein stability and cell transformation. Oncogene 27, 2422–2429 (2007).

    Article  PubMed  CAS  Google Scholar 

  200. Wang, Y.-N., Chen, Y.-J. & Chang, W.-C. Activation of extracellular signal-regulated kinase signaling by epidermal growth factor mediates c-Jun activation and p300 recruitment in keratin 16 gene expression. Mol. Pharmacol. 69, 85–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  201. Wertz, I. E. et al. Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303, 1371–1374 (2004).

    Article  CAS  PubMed  Google Scholar 

  202. Szabo, E., Riffe, M. E., Steinberg, S. M., Birrer, M. J. & Linnoila, R. I. Altered cJun expression: an early event in human lung carcinogenesis. Cancer Res. 56, 305–315 (1996).

    CAS  PubMed  Google Scholar 

  203. Rangatia, J. et al. Elevated c-Jun expression in acute myeloid leukemias inhibits C/EBPα DNA binding via leucine zipper domain interaction. Oncogene 22, 4760–4764 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Zhang, W., Hart, J., McLeod, H. L. & Wang, H. L. Differential expression of the AP1 transcription factor family members in human colorectal epithelial and neuroendocrine neoplasms. Am. J. Clin. Path. 124, 11–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  205. Tessari, G. et al. The expression of proto-oncogene c-jun in human pancreatic cancer. Anticancer Res. 19, 863–867 (1999).

    CAS  PubMed  Google Scholar 

  206. Acay, R. R., Santos, E.d. & Machado de Sousa, S. O. Correlation between c-Jun and human papillomavirus in oral premalignant and malignant lesions. Oral Oncology 44, 698–702 (2008).

    Article  CAS  PubMed  Google Scholar 

  207. Assimakopoulou, M. & Varakis, J. AP1 and heat shock protein 27 expression in human astrocytomas. J. Cancer Res. Clin. Oncol. 127, 727–732 (2001).

    CAS  PubMed  Google Scholar 

  208. Papachristou, D. J., Batistatou, A., Sykiotis, G. P., Varakis, I. & Papavassiliou, A. G. Activation of the JNK-AP1 signal transduction pathway is associated with pathogenesis and progression of human osteosarcomas. Bone 32, 364–371 (2003).

    Article  CAS  PubMed  Google Scholar 

  209. Assimakopoulou, M., Kondyli, M., Gatzounis, G., Maraziotis, T. & Varakis, J. Neurotrophin receptors expression and JNK pathway activation in human astrocytomas. BMC Cancer 7, 202 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Langer, S. et al. Jun and Fos family protein expression in human breast cancer: correlation of protein expression and clinicopathological parameters. Eur. J. Gynaecol Oncol. 27, 345–352 (2006).

    CAS  PubMed  Google Scholar 

  211. Mao, X. & Orchard, G. Abnormal AP1 protein expression in primary cutaneous B-cell lymphomas. Br. J. Dermatol. 159, 145–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  212. Wang, H., Birkenbach, M. & Hart, J. Expression of Jun family members in human colorectal adenocarcinoma. Carcinogenesis 21, 1313–1317 (2000).

    Article  CAS  PubMed  Google Scholar 

  213. Linardopoulos, S. et al. Human lung and bladder carcinoma tumors as compared to their adjacent normal tissue have elevated AP1 activity associated with the retinoblastoma gene promoter. Anticancer Res. 13, 257–262 (1993).

    CAS  PubMed  Google Scholar 

  214. Bamberger, A. M., Milde-Langosch, K., Rossing, E., Goemann, C. & Loning, T. Expression pattern of the AP1 family in endometrial cancer: correlations with cell cycle regulators. J. Cancer Res. Clin. Oncol. 127, 545–550 (2001).

    Article  CAS  PubMed  Google Scholar 

  215. Prusty, B. K. & Das, B. C. Constitutive activation of transcription factor AP1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP1 activity in HeLa cells by curcumin. Int. J. Cancer 113, 951–960 (2005).

    Article  CAS  PubMed  Google Scholar 

  216. Cirillo, G. et al. Role of distinct mitogen-activated protein kinase pathways and cooperation between Ets-2, ATF-2, and Jun family members in human urokinase-type plasminogen activator gene induction by interleukin-1 and tetradecanoyl phorbol acetate. Mol. Cell. Biol. 19, 6240–6252 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lin, D. W. et al. Transforming growth factor beta up-regulates cysteine-rich protein 2 in vascular smooth muscle cells via activating transcription factor 2. J. Biol. Chem. 283, 15003–15014 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Read, M. A. et al. Tumor necrosis factorα-induced E-selectin expression is activated by the nuclear factor-kappaB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways. J. Biol. Chem. 272, 2753–2761 (1997).

    Article  CAS  PubMed  Google Scholar 

  219. Herr, I. et al. Autoamplification of apoptosis following ligation of CD95-L, TRAIL and TNF-α. Oncogene 19, 4255–4262 (2000).

    Article  CAS  PubMed  Google Scholar 

  220. Kool, J. et al. Induction of ATF3 by ionizing radiation is mediated via a signaling pathway that includes ATM, Nibrin1, stress-induced MAPkinases and ATF-2. Oncogene 22, 4235–4242 (2003).

    Article  CAS  PubMed  Google Scholar 

  221. Bhat, N. R., Feinstein, D. L., Shen, Q. & Bhat, A. N. p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor κB, cAMP response element-binding protein, CCAAT/enhancer-binding protein-β, and activating transcription factor-2. J. Biol. Chem. 277, 29584–29592 (2002).

    Article  CAS  PubMed  Google Scholar 

  222. Penix, L. A. et al. The proximal regulatory element of the interferon-γ promoter mediates selective expression in T cells. J. Biol. Chem. 271, 31964–31972 (1996).

    Article  CAS  PubMed  Google Scholar 

  223. Chen, K. D., Hung., J. J., Huang, H. L., Chang, M. D. & Lai, Y. K. Rapid induction of the Grp78 gene by cooperative actions of okadaic acid and heat-shock in 9L rat brain tumor cells — involvement of a cAMP responsive element-like promoter sequence and a protein kinase A signaling pathway. Eur. J. Biochem. 248, 120–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  224. Suzuki, T., Yamakuni, T., Hagiwara, M. & Ichinose, H. Identification of ATF-2 as a transcriptional regulator for the tyrosine hydroxylase gene. J. Biol. Chem. 277, 40768–40774 (2002).

    Article  CAS  PubMed  Google Scholar 

  225. Akimoto, T. et al. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J. Biol. Chem. 280, 19587–19593 (2005).

    Article  CAS  PubMed  Google Scholar 

  226. Kawasaki, H. et al. p300 and ATF-2 are components of the DRF complex, which regulates retinoic acid- and E1A-mediated transcription of the c-jun gene in F9 cells. Genes Dev. 12, 233–45 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zhang, J. Y. et al. The JNK/AP1/ATF2 pathway is involved in H2O2-induced acetylcholinesterase expression during apoptosis. Cell. Mol. Life Sci. 65, 1435–1445 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Ronai laboratory for discussions and critical reading. We thank K. Wright for editorial assistance. Support by US National Cancer Institute (NCI) grants CA099961, CA051995, CA117927 (to Z.R.) and by Roemmers Foundation, The Harry J Lloyd Charitable Trust and ANPCyT (PICT-2007-01010) (to P.L.B.) is gratefully acknowledged. E.L. was supported by NCI grant T32 CA121929 and by the American Cancer Society (ACS), Illinois Division, Postdoctoral Fellowship, PF-09-112-01-GMC.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

JUN Transcriptional Targets (PDF 204 kb)

Supplemental information S2 (table)

Deregulation of Fos family members in cancer. (PDF 200 kb)

Supplemental information S3 (table)

ATF/CREB Interactions with JUN & Tumorigenic Implications (PDF 234 kb)

Related links

Related links

DATABASES

Pathway Interaction Database

ATF2

FURTHER INFORMATION

Ze'ev ronai's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Bergami, P., Lau, E. & Ronai, Z. Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer 10, 65–76 (2010). https://doi.org/10.1038/nrc2681

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing