Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

STATs in cancer inflammation and immunity: a leading role for STAT3

Key Points

  • Signal transducer and activator of transcription (STAT) proteins have dual roles: they transduce signals through the cytoplasm and function as transcription factors in the nucleus. Although some STAT proteins such as STAT1 increase anti-tumour immunity, STAT3 and others induce cancer-promoting inflammation.

  • STAT3 signalling is a major intrinsic pathway for cancer inflammation owing to its frequent activation in malignant cells and key role in regulating many genes crucial for cancer inflammation in the tumour microenvironment.

  • Persistent activation of STAT3, and to a lesser extent STAT5, in diverse human cancers increases proliferation, survival, angiogenesis and metastasis, while also inhibiting anti-tumour immunity.

  • Many STAT3-regulated genes encode cytokines and growth factors, the receptors of which in turn activate the same STAT3 pathways, thereby propagating a stable feedforward loop between tumour cells and non-transformed stromal cells, including myeloid cells and T cells, promoting inflammatory responses that further support tumour growth and survival.

  • Interleukin-6 (IL-6)–Janus kinase (JAK)–STAT3 signalling is important for cancers resulting from the activation of the intrinsic inflammatory pathway owing to genetic or epigenetic changes in tumour cells. Extrinsic environmental inflammatory factors such as sunlight, pathogens and chemical carcinogens can also activate STAT3 through different mechanisms.

  • STAT3 interacts with nuclear factor-κB (NF-κB) at multiple levels and is activated by several NF-κB-regulated gene products, including IL-6. These two transcription factors regulate a multitude of genes important for STAT3 activation and cancer-promoting inflammation.

  • STAT1-driven anti-tumour immune responses and STAT3-mediated immune modulatory pathways can be mutually antagonistic, suggesting that therapeutic interventions targeting specific STATs can tip this balance to convert tumour-promoting inflammation to anti-tumour immune responses. Therefore, STAT3 has emerged as a crucial target for cancer therapy and STAT3 inhibitors are actively being developed.

  • Several tyrosine kinase inhibitors already in the clinic reduce STAT3 signalling by various mechanisms, thereby inducing tumour cell apoptosis and modulating inflammation in the tumour microenvironment in favour of therapeutic responses.

Abstract

Commensurate with their roles in regulating cytokine-dependent inflammation and immunity, signal transducer and activator of transcription (STAT) proteins are central in determining whether immune responses in the tumour microenvironment promote or inhibit cancer. Persistently activated STAT3 and, to some extent, STAT5 increase tumour cell proliferation, survival and invasion while suppressing anti-tumour immunity. The persistent activation of STAT3 also mediates tumour-promoting inflammation. STAT3 has this dual role in tumour inflammation and immunity by promoting pro-oncogenic inflammatory pathways, including nuclear factor-κB (NF-κB) and interleukin-6 (IL-6)–GP130–Janus kinase (JAK) pathways, and by opposing STAT1- and NF-κB-mediated T helper 1 anti-tumour immune responses. Consequently, STAT3 is a promising target to redirect inflammation for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STAT3 connects inflammation and cancer.
Figure 2: Different STAT proteins modulate pro-cancer and anti-tumour responses by myeloid cells.
Figure 3: STAT proteins regulate cancer adaptive immunity.
Figure 4: Multilevel interactions between STAT3 and NF-κB.

Similar content being viewed by others

References

  1. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Catlett-Falcone, R. et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10, 105–115 (1999). This report was the first to document that IL-6–JAK–STAT3 signalling, which increases inflammation-induced cancer, is important for the growth and survival of human tumour cells.

    Article  CAS  PubMed  Google Scholar 

  3. Bollrath, J. et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15, 91–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Kujawski, M. et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J. Clin. Invest. 118, 3367–3377 (2008). This study demonstrated that STAT3 is a crucial mediator for myeloid cell-induced tumour angiogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kortylewski, M. et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 15, 114–123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, L., Yi, T., Kortylewski, M., Pardoll, D., Zeng, D., Yu, H. IL-17 can promote tumor growth through an IL-6/Stat3 signaling pathway. J. Exp. Med. 206, 1457–1464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009). Studies reported in references 3 and 7 identified STAT3 as a central node for inflammation-induced cancer, suggesting that it is a crucial target for treating and preventing cancer-promoting inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shain, K. H. et al. β1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res. 69, 1009–1015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ara, T. et al. Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Res. 69, 329–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao, S. P. et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J. Clin. Invest. 117, 3846–3856 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olcaydu, D. et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nature Genet. 41, 450–454 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Rebouissou, S. et al. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457, 200–204 (2009). This study provides excellent examples of genetic mutations activating the IL-6–GP130–JAK–STAT3 pathway leading to inflammation-associated human cancer.

    Article  CAS  PubMed  Google Scholar 

  13. Ernst, M. et al. STAT3 and STAT1 mediate IL-11-dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice. J. Clin. Invest. 118, 1727–1738 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Arredondo, J., Chernyavsky, A. I., Jolkovsky, D. L., Pinkerton, K. E. & Grando, S. A. Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes. FASEB J. 20, 2093–2101 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Gu, M., Singh, R. P., Dhanalakshmi, S., Agarwal, C. & Agarwal, R. Silibinin inhibits inflammatory and angiogenic attributes in photocarcinogenesis in SKH-1 hairless mice. Cancer Res. 67, 3483–3491 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Aziz, M. H., Manoharan, H. T. & Verma, A. K. Protein kinase C epsilon, which sensitizes skin to sun's UV radiation-induced cutaneous damage and development of squamous cell carcinomas, associates with Stat3. Cancer Res. 67, 1385–1394 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Bronte-Tinkew, D. M. et al. Helicobacter pylori cytotoxin-associated gene A activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo. Cancer Res. 69, 632–639 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Landen, C. N. Jr, et al. Neuroendocrine modulation of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Res. 67, 10389–10396 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Samavati, L. et al. STAT3 tyrosine phosphorylation is critical for interleukin 1β and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol. Immunol. 46, 1867–1877 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Chan, K. S. et al. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. J. Clin. Invest. 114, 720–728 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Migone, T. S. et al. Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269, 79–81 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Sano, S. et al. Signal transducer and activator of transcription 3 is a key regulator of keratinocyte survival and proliferation following UV irradiation. Cancer Res. 65, 5720–5729 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Karin, M. & Greten, F. R. NF-κB: linking inflammation and immunity to cancer development and progression. Nature Rev. Immunol. 5, 749–759 (2005).

    Article  CAS  Google Scholar 

  24. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Baud, V. & Karin, M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nature Rev. Drug Discov. 8, 33–40 (2009).

    Article  CAS  Google Scholar 

  26. Darnell, J. E. Jr. Transcription factors as targets for cancer therapy. Nature Rev. Cancer 2, 740–749 (2002).

    Article  CAS  Google Scholar 

  27. Yu, H. & Jove, R. The STATs of cancer — new molecular targets come of age. Nature Rev. Cancer 4, 97–105 (2004).

    Article  CAS  Google Scholar 

  28. Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Rev. Immunol. 7, 41–51 (2007).

    Article  CAS  Google Scholar 

  29. Zhong, Z., Wen, Z. & Darnell, J. E. Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264, 95–98 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Darnell, J. E. Jr, Kerr, I. M. & Stark, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999). This report was the first to demonstrate that Stat3 has intrinsic oncogenic potential.

    Article  CAS  PubMed  Google Scholar 

  32. Lee, H. et al. Persistently activated Stat3 maintains constitutive NF-κB activity in tumors. Cancer Cell 15, 283–293 (2009). This study revealed how STAT3 directly interacts with RELA and facilitates its acetylation by p300, leading to prolonged NF-κB nuclear retention in both tumour cells and tumour-associated immune cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, T. & Stark, G. R. Cytokine overexpression and constitutive NFκB in cancer. Cell Cycle 3, 1114–1117 (2004).

    CAS  PubMed  Google Scholar 

  34. Welte, T. et al. STAT3 deletion during hematopoiesis causes Crohn's disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Proc. Natl Acad. Sci. USA 100, 1879–1884 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, J. et al. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFκB. Genes Dev. 21, 1396–1408 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Basseres, D. S. & Baldwin, A. S. Nuclear factor-κB and inhibitor of κB kinase pathways in oncogenic initiation and progression. Oncogene 25, 6817–6830 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Haura, E. B., Turkson, J. & Jove, R. Mechanisms of disease: insights into the emerging role of signal transducers and activators of transcription in cancer. Nature. Clin. Pract. Oncol. 2, 315–324 (2005).

    Article  CAS  Google Scholar 

  38. Heinrich, P. C., Behrmann, I., Muller-Newen, G., Schaper, F. & Graeve, L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334 (Pt 2), 297–314 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ogura, H. et al. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29, 628–636 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Akira, S. et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77, 63–71 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Dunn, G. P. et al. A critical function for type I interferons in cancer immunoediting. Nature Immunol. 6, 722–729 (2005).

    Article  CAS  Google Scholar 

  42. Blattman, J. N. & Greenberg, P. D. Cancer immunotherapy: a treatment for the masses. Science 305, 200–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Pardoll, D. M. Spinning molecular immunology into successful immunotherapy. Nature Rev. Immunol. 2, 227–238 (2002).

    Article  CAS  Google Scholar 

  44. Kaplan, D. H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA 95, 7556–7561 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007). This paper demonstrates the important role of adaptive immunity in controlling tumour outgrowth.

    Article  CAS  PubMed  Google Scholar 

  46. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Dunn, G. P., Koebel, C. M. & Schreiber, R. D. Interferons, immunity and cancer immunoediting. Nature Rev. Immunol. 6, 836–848 (2006).

    Article  CAS  Google Scholar 

  48. Sasaki, K. et al. Stat6 signaling suppresses VLA-4 expression by CD8+ T cells and limits their ability to infiltrate tumor lesions in vivo. J. Immunol. 181, 104–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Ostrand-Rosenberg, S. & Sinha, P. Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 182, 4499–4506 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Kortylewski, M. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature Med. 11, 1314–1321 (2005). This was the first report to show that STAT3 is persistently activated in tumour-associated immune cells, leading to the suppression of anti-tumour innate and adaptive immune responses.

    Article  CAS  PubMed  Google Scholar 

  51. Cheng, F. et al. A critical role for Stat3 signaling in immune tolerance. Immunity 19, 425–436 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Cheng, P. et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 205, 2235–49 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ho, H. H. & Ivashkiv, L. B. Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J. Biol. Chem. 281, 14111–14118 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Rev. Immunol. 3, 133–146 (2003).

    Article  CAS  Google Scholar 

  55. Matsumura, Y. et al. Selective expansion of foxp3-positive regulatory T cells and immunosuppression by suppressors of cytokine signaling 3-deficient dendritic cells. J. Immunol. 179, 2170–2179 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, Z. et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc. Natl Acad. Sci. USA 103, 8137–8142 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, Z. & O'Shea, J. J. Th17 cells: a new fate for differentiating helper T cells. Immunol. Res. 41, 87–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Med. 15, 1016–1022 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Schindler, C., Levy, D. E. & Decker, T. JAK-STAT signaling: from interferons to cytokines. J. Biol. Chem. 282, 20059–20063 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Takeda, K. & Akira, S. STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev. 11, 199–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Darnell, J. E., Jr. Studies of IFN-induced transcriptional activation uncover the Jak-Stat pathway. J. Interferon Cytokine Res. 18, 549–554 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Taga, T. & Kishimoto, T. Gp130 and the interleukin-6 family of cytokines. Annu. Rev. Immunol. 15, 797–819 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Hirano, T., Ishihara, K. & Hibi, M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19, 2548–2556 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Levy, D. E. & Darnell, J. E., Jr. Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  Google Scholar 

  66. Heinrich, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chin, Y. E. et al. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 272, 719–722 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Shen, Y., Devgan, G., Darnell, J. E., Jr, & Bromberg, J. F. Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc. Natl Acad. Sci. USA 98, 1543–1548 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leung, S., Qureshi, S. A., Kerr, I. M., Darnell, J. E., Jr & Stark, G. R. Role of STAT2 in the alpha interferon signaling pathway. Mol. Cell. Biol. 15, 1312–1317 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, Y. et al. Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung. Cancer Res. 67, 8494–8503 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Judd, L. M. et al. STAT3 activation regulates growth, inflammation, and vascularization in a mouse model of gastric tumorigenesis. Gastroenterology 131, 1073–1085 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Ogata, H. et al. Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis. Gastroenterology 131, 179–193 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Dauer, D. J. et al. Stat3 regulates genes common to both wound healing and cancer. Oncogene 24, 3397–3408 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Grandis, J. R. et al. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth in vitro. J. Clin. Invest. 102, 1385–1392 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Trevino, J. G. et al. Src activation of Stat3 is an independent requirement from NF-κB activation for constitutive IL-8 expression in human pancreatic adenocarcinoma cells. Angiogenesis 9, 101–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Bowman, T. et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc. Natl Acad. Sci. USA 98, 7319–7324 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu, C. L. et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269, 81–83 (1995). This was the first report of persistent activation of STAT3 signalling by a specific oncoprotein in transformed cells.

    Article  CAS  PubMed  Google Scholar 

  78. Lo, H. W. et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 7, 575–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Lin, T. S., Mahajan, S. & Frank, D. A. STAT signaling in the pathogenesis and treatment of leukemias. Oncogene 19, 2496–2504 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Battle, T. E. & Frank, D. A. The role of STATs in apoptosis. Curr. Mol. Med. 2, 381–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Bruns, H. A. & Kaplan, M. H. The role of constitutively active Stat6 in leukemia and lymphoma. Crit. Rev. Oncol. Hematol. 57, 245–253 (2006).

    Article  PubMed  Google Scholar 

  82. Skinnider, B. F., Kapp, U. & Mak, T. W. The role of interleukin 13 in classical Hodgkin lymphoma. Leuk. Lymphoma 43, 1203–1210 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Huang, M. et al. Inhibition of Bcr-Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene 21, 8804–8816 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Xie, T. X. et al. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res. 66, 3188–3196 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Sumimoto, H., Imabayashi, F., Iwata, T. & Kawakami, Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med. 203, 1651–1656 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nature Med. 10, 48–54 (2004).

    Article  PubMed  CAS  Google Scholar 

  87. Dalwadi, H. et al. Cyclooxygenase-2-dependent activation of signal transducer and activator of transcription 3 by interleukin-6 in non-small cell lung cancer. Clin. Cancer Res. 11, 7674–7682 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Russo, V., Martienssen, R. A, and Riggs, A. D. Epigenetic Mechanisms of Gene Regulation. 662 (Cold Spring Harbor Laboratory Press, USA, 1996).

    Google Scholar 

  89. Zhang, Q., Wang, H. Y., Liu, X. & Wasik, M. A. STAT5A is epigenetically silenced by the tyrosine kinase NPM1-ALK and acts as a tumor suppressor by reciprocally inhibiting NPM1-ALK expression. Nature Med. 13, 1341–1348 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Choudhari, S. R. et al. Deactivation of Akt and STAT3 signaling promotes apoptosis, inhibits proliferation, and enhances the sensitivity of hepatocellular carcinoma cells to an anticancer agent, Atiprimod. Mol. Cancer Ther. 6, 112–121 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Sun, S. & Steinberg, B. M. PTEN is a negative regulator of STAT3 activation in human papillomavirus-infected cells. J. Gen. Virol. 83, 1651–1658 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Muromoto, R. et al. Epstein-Barr virus-derived EBNA2 regulates STAT3 activation. Biochem. Biophys. Res. Commun. 378, 439–443 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Kortylewski, M. et al. Toll-like receptor 9 activation of signal transducer and activator of transcription 3 constrains its agonist-based immunotherapy. Cancer Res. 69, 2497–2505 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chiron, D., Bekeredjian-Ding, I., Pellat-Deceunynck, C., Bataille, R. & Jego, G. Toll-like receptors: lessons to learn from normal and malignant human B cells. Blood 112, 2205–2213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Groblewska, M. et al. Serum interleukin 6 (IL-6) and C-reactive protein (CRP) levels in colorectal adenoma and cancer patients. Clin. Chem. Lab. Med. 46, 1423–1428 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Naugler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Matsukawa, A. et al. Stat3 in resident macrophages as a repressor protein of inflammatory response. J. Immunol. 175, 3354–3359 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nature Rev. Cancer 4, 71–78 (2004).

    Article  CAS  Google Scholar 

  100. Chang, H. C. et al. Impaired development of human Th1 cells in patients with deficient expression of STAT4. Blood 113, 5887–5890 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Kubo, M., Hanada, T. & Yoshimura, A. Suppressors of cytokine signaling and immunity. Nature Immunol. 4, 1169–1176 (2003).

    Article  CAS  Google Scholar 

  103. Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nature Rev. Immunol. 6, 295–307 (2006).

    Article  CAS  Google Scholar 

  104. Gerosa, F. et al. Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J. Exp. Med. 205, 1447–1461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Langowski, J. L. et al. IL-23 promotes tumour incidence and growth. Nature 442, 461–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Numasaki, M. et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood 101, 2620–2627 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Kryczek, I., Wei, S., Szeliga, W., Vatan, L. & Zou, W. Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 114, 357–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Karin, M., Cao, Y., Greten, F. R. & Li, Z. W. NF-κB in cancer: from innocent bystander to major culprit. Nature Rev. Cancer 2, 301–310 (2002).

    Article  CAS  Google Scholar 

  110. Chen, L. F. & Greene, W. C. Shaping the nuclear action of NF-κB. Nature Rev. Mol. Cell Biol. 5, 392–401 (2004).

    Article  CAS  Google Scholar 

  111. Wang, J. et al. Distinct roles of different NF-κB subunits in regulating inflammatory and T cell stimulatory gene expression in dendritic cells. J. Immunol. 178, 6777–6788 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Chiarle, R. et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nature Med. 11, 623–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Milner, J. D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008). This paper demonstrates that STAT3 dominant-negative mutation in individuals with hyper-IgE syndrome is associated with impaired T H 17 cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Minegishi, Y. et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448, 1058–1062 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Al Khatib, S. et al. Defects along the TH17 differentiation pathway underlie genetically distinct forms of the hyper IgE syndrome. J. Allergy Clin. Immunol. 124, 342–348, (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Sen, B., Saigal, B., Parikh, N., Gallick, G. & Johnson, F. M. Sustained Src inhibition results in signal transducer and activator of transcription 3 (STAT3) activation and cancer cell survival via altered Janus-activated kinase-STAT3 binding. Cancer Res. 69, 1958–1965 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Turkson, J. et al. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol. Cancer Ther. 3, 261–269 (2004).

    CAS  PubMed  Google Scholar 

  119. Mandal, P. K. et al. Conformationally constrained peptidomimetic inhibitors of signal transducer and activator of transcription. 3: Evaluation and molecular modeling. J. Med. Chem. 52, 2429–2442 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Turkson, J. et al. Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J. Biol. Chem. 276, 45443–45455 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Siddiquee, K. et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc. Natl Acad. Sci. USA 104, 7391–7396 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schust, J., Sperl, B., Hollis, A., Mayer, T. U. & Berg, T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol. 13, 1235–1242 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Turkson, J. et al. Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity. Mol. Cancer Ther. 3, 1533–1542 (2004).

    CAS  PubMed  Google Scholar 

  124. Turkson, J. et al. A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells. J. Biol. Chem. 280, 32979–32988 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Ling, X. & Arlinghaus, R. B. Knockdown of STAT3 expression by RNA interference inhibits the induction of breast tumors in immunocompetent mice. Cancer Res. 65, 2532–2536 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Leong, P. L. et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc. Natl Acad. Sci. USA 100, 4138–4143 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Barton, B. E., Karras, J. G., Murphy, T. F., Barton, A. & Huang, H. F. Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: Direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol. Cancer Ther. 3, 11–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Kortylewski, M. et al. In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nature Biotechnol. 27, 925–932 (2009).

    Article  CAS  Google Scholar 

  129. Sen, M. et al. Lack of toxicity of a STAT3 decoy oligonucleotide. Cancer Chemother. Pharmacol. 63, 983–995 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Blaskovich, M. A. et al. Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res. 63, 1270–1279 (2003).

    CAS  PubMed  Google Scholar 

  131. Kotha, A. et al. Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein. Mol. Cancer Ther. 5, 621–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Nam, S. et al. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proc. Natl Acad. Sci. USA 102, 5998–6003 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ghoreschi, K., Laurence, A. & O'Shea, J. J. Selectivity and therapeutic inhibition of kinases: to be or not to be? Nature Immunol. 10, 356–360 (2009).

    Article  CAS  Google Scholar 

  134. Pesu, M. et al. Therapeutic targeting of Janus kinases. Immunol. Rev. 223, 132–142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kong, L. Y. et al. A novel inhibitor of signal transducers and activators of transcription 3 activation is efficacious against established central nervous system melanoma and inhibits regulatory T cells. Clin. Cancer Res. 14, 5759–5768 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nefedova, Y. et al. Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res. 65, 9525–9535 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gozgit, J. M. et al. Effects of the JAK2 inhibitor, AZ960, on Pim/BAD/BCL-xL survival signaling in the human JAK2 V617F cell line SET-2. J. Biol. Chem. 283, 32334–32343 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Yang, F. et al. Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol. Cancer Ther. 7, 3519–3526 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xin, H. et al. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 69, 2506–2513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ozao-Choy, J. et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 69, 2514–2522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ko, J. S. et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148–2157 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Caprioli, F. et al. Autocrine regulation of IL-21 production in human T lymphocytes. J. Immunol. 180, 1800–1807 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Donnelly, R. P., Dickensheets, H. & Finbloom, D. S. The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes. J. Interferon Cytokine Res. 19, 563–573 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Lamprecht, B. et al. Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3α. Blood 112, 3339–3347 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Takatori, H., Kanno, Y., Chen, Z. & O'Shea, J. J. New complexities in helper T cell fate determination and the implications for autoimmune diseases. Mod. Rheumatol. 18, 533–541 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Stout, B. A., Bates, M. E., Liu, L. Y., Farrington, N. N. & Bertics, P. J. IL-5 and granulocyte-macrophage colony-stimulating factor activate STAT3 and STAT5 and promote Pim-1 and cyclin D3 protein expression in human eosinophils. J. Immunol. 173, 6409–6417 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108, 1571–1579 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Finkelman, F. D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev. 201, 139–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Schuringa, J. J., Timmer, H., Luttickhuizen, D., Vellenga, E. & Kruijer, W. c-Jun and c-Fos cooperate with STAT3 in IL-6-induced transactivation of the IL-6 respone element (IRE). Cytokine 14, 78–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Lo, H. W. et al. Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res. 67, 9066–9076 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wu, Y., Diab, I., Zhang, X., Izmailova, E. S. & Zehner, Z. E. Stat3 enhances vimentin gene expression by binding to the antisilencer element and interacting with the repressor protein, ZBP-89. Oncogene 23, 168–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Liu, H. et al. Serine phosphorylation of STAT3 is essential for Mcl-1 expression and macrophage survival. Blood 102, 344–352 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Madamanchi, N. R., Li, S., Patterson, C. & Runge, M. S. Thrombin regulates vascular smooth muscle cell growth and heat shock proteins via the JAK-STAT pathway. J. Biol. Chem. 276, 18915–18924 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Bartoli, M. et al. VEGF differentially activates STAT3 in microvascular endothelial cells. FASEB J. 17, 1562–1564 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Gao, H., Priebe, W., Glod, J. & Banerjee, D. Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells 27, 857–865 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Leung, T. H., Hoffmann, A. & Baltimore, D. One nucleotide in a κB site can determine cofactor specificity for NF-κB dimers. Cell 118, 453–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Burysek, L., Syrovets, T. & Simmet, T. The serine protease plasmin triggers expression of MCP-1 and CD40 in human primary monocytes via activation of p38 MAPK and janus kinase (JAK)/STAT signaling pathways. J. Biol. Chem. 277, 33509–33517 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank members of our laboratories who have made major discoveries in the topics discussed here. We also thank the many laboratories that have contributed important publications relevant to the topics in this Review but which could not be cited owing to space limitations. Special thanks go to L. Wang and J. Deng for helping to prepare the figures and references, R. Buettner for compiling data on STAT3 inhibitors, and M. Kortylewski for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

TH1

A TH1 response is mediated by CD4+ T cells and promoted by type 1 interferons and IL-12, this response mediates its effect through cytokines, particularly IFNγ, promoting cellular immune responses against intracellular infections and tumours.

Innate immune cells

Innate immune cells include natural killer cells, macrophages, neutrophils and dendritic cells, which provide immediate non-specific defence against pathogens. These cells identify and destroy virus-, bacteria- and fungus-infected cells and malignant cells.

Myeloid-derived suppressor cells

MDSCs. Heterogenous and plastic cells. When isolated from normal bone marrow, they do not exhibit imunosuppresive effects. However, when exposed to the tumour microenvironment, they inhibit both CD4+ and CD8+ T cells.

TH17 T cells

Defined by the secretion of IL-17A but not IFNγ or IL-4. TH17 cells have been implicated in protective immunity to intestinal and pulmonary bacterial infections, as well as pathological immunity in several autoimmune diseases.

Type 1 IFNs

Include multiple family members of the IFNα group and the related IFNβ. All type 1 IFNs bind to a single receptor, termed the type 1 or IFNα receptor. They mediate direct anti-viral activity against infected cells, and can also inhibit tumour growth and promote anti-tumour immune responses.

Natural killer cell

A type of lymphocyte that protects against infectious microbes and kills tumour cells through the recognition of specific cell membrane molecules that are upregulated under conditions of cell stress, such as infection or carcinogenic transformation.

Adaptive immunity

Mediated by antigen-specific T lymphocytes and antibodies produced by B cells. It takes longer to develop than innate immunity but has greater antigen specificity and includes the development of immunological memory.

Dendritic cells

Specialized and the most efficient antigen-presenting cells, which can activate T cells and thereby induce antigen-specific immune responses.

CD8+ T cell

The T cell subset from which cytolytic T cells develop. These in turn directly recognize target cells based on the surface expression of antigenic peptide complexed with MHC I molecules and kill their targets by injecting granzymes that induce apoptosis.

Lamina propria

A constituent of the moist linings of mucous membranes, which line different tubes of the body, including the gastrointestinal tract.

Hyper-IgE syndrome

A rare immune and connective tissue disorder characterized by dermatitis, cyst-forming pneumonia and increased serum levels of immunoglobulin E antibody. In some patients it is caused by autosomal dominant STAT3 mutations.

Decoy DNA-binding sites

DNA oligonucleotides with sequence-specific binding sites that sequester their cognate binding proteins, thereby preventing them from binding to the regulatory sequences of nuclear genes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9, 798–809 (2009). https://doi.org/10.1038/nrc2734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2734

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing