Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Does tumour dormancy offer a therapeutic target?

Abstract

The increasing number of cancer survivors is cause for celebration, but this expanding population has highlighted the problem of tumour dormancy, which can lead to relapse. As we start to understand more about the biology of dormant cancer cells, we can begin to address how best to treat this form of disease. Preclinical models and initial clinical trials, as exemplified in patients with breast cancer, are paving the way to address how best to treat long-term cancer survivors to minimize the risk of cancer recurrence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cancer cells can coexist in three distinct states in a metastatic organ.
Figure 2: The differential sensitivity of dormant versus actively growing cancer cells to doxorubicin.
Figure 3: Long-term risk of breast cancer recurrence by ER status.
Figure 4: MA17 and TEACH trials.

Similar content being viewed by others

References

  1. Weiss, L. Metastatic inefficiency. Adv. Cancer Res. 54, 159–211 (1990).

    Article  CAS  Google Scholar 

  2. Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).

    Article  CAS  Google Scholar 

  3. Heyn, C. et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn. Reson. Med. 56, 1001–1010 (2006).

    Article  Google Scholar 

  4. Townson, J. L. et al. Three-dimensional imaging and quantification of both solitary cells and metastases in whole mouse liver by magnetic resonance imaging. Cancer Res. 69, 8326–8331 (2009).

    Article  CAS  Google Scholar 

  5. Luzzi, K. J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865–873 (1998).

    Article  CAS  Google Scholar 

  6. Naumov, G. N. et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 62, 2162–2168 (2002).

    CAS  PubMed  Google Scholar 

  7. Cameron, M. D. et al. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res. 60, 2541–2546 (2000).

    CAS  PubMed  Google Scholar 

  8. Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1, 149–153 (1995).

    Article  CAS  Google Scholar 

  9. Aguirre-Ghiso, J. A. Models, mechanisms and clinical evidence for cancer dormancy. Nature Rev. Cancer 7, 834–846 (2007).

    Article  CAS  Google Scholar 

  10. Muller, V., Alix-Panabieres, C. & Pantel, K. Insights into minimal residual disease in cancer patients: implications for anti-cancer therapies. Eur. J. Cancer 46, 1189–1197 (2010).

    Article  Google Scholar 

  11. Pantel, K., Alix-Panabieres, C. & Riethdorf, S. Cancer micrometastases. Nature Rev. Clin. Oncol. 6, 339–351 (2009).

    CAS  Google Scholar 

  12. Naumov, G. N. et al. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J. Natl Cancer Inst. 98, 316–325 (2006).

    Article  Google Scholar 

  13. Naumov, G. N., Akslen, L. A. & Folkman, J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5, 1779–1787 (2006).

    Article  CAS  Google Scholar 

  14. Indraccolo, S., Favaro, E. & Amadori, A. Dormant tumors awaken by a short-term angiogenic burst: the spike hypothesis. Cell Cycle 5, 1751–1755 (2006).

    Article  CAS  Google Scholar 

  15. Favaro, E., Amadori, A. & Indraccolo, S. Cellular interactions in the vascular niche: implications in the regulation of tumor dormancy. APMIS 116, 648–659 (2008).

    Article  CAS  Google Scholar 

  16. Indraccolo, S. et al. Cross-talk between tumor and endothelial cells involving the Notch3-Dll4 interaction marks escape from tumor dormancy. Cancer Res. 69, 1314–1323 (2009).

    Article  CAS  Google Scholar 

  17. Ranganathan, A. C., Adam, A. P., Zhang, L. & Aguirre-Ghiso, J. A. Tumor cell dormancy induced by p38SAPK and ER-stress signaling: an adaptive advantage for metastatic cells? Cancer Biol. Ther. 5, 729–735 (2006).

    Article  CAS  Google Scholar 

  18. Allgayer, H. & Aguirre-Ghiso, J. A. The urokinase receptor (u-PAR)-a link between tumor cell dormancy and minimal residual disease in bone marrow? APMIS 116, 602–614 (2008).

    Article  CAS  Google Scholar 

  19. Adam, A. P. et al. Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res. 69, 5664–5672 (2009).

    Article  CAS  Google Scholar 

  20. Rak, J. W., McEachern, D. & Miller, F. R. Sequential alteration of peanut agglutinin binding-glycoprotein expression during progression of murine mammary neoplasia. Br. J. Cancer 65, 641–648 (1992).

    Article  CAS  Google Scholar 

  21. Morris, V. L., Tuck, A. B., Wilson, S. M., Percy, D. & Chambers, A. F. Tumor progression and metastasis in murine D2 hyperplastic alveolar nodule mammary tumor cell lines. Clin. Exp. Metastasis 11, 103–112 (1993).

    Article  CAS  Google Scholar 

  22. Naumov, G. N. et al. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res. Treat. 82, 199–206 (2003).

    Article  CAS  Google Scholar 

  23. Barkan, D. et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 68, 6241–6250 (2008).

    Article  CAS  Google Scholar 

  24. Barkan, D. et al. Metastatic growth from dormant cells induced by a Col-I-enriched fibrotic environment. Cancer Res. 70, 5706–5716 (2010).

    Article  CAS  Google Scholar 

  25. Barkan, D., Green, J. E. & Chambers, A. F. Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur. J. Cancer 46, 1181–1188 (2010).

    Article  CAS  Google Scholar 

  26. Shibue, T. & Weinberg, R. A. Integrin β1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc. Natl Acad. Sci. USA 106, 10290–10295 (2009).

    Article  CAS  Google Scholar 

  27. Goodison, S. et al. Prolonged dormancy and site-specific growth potential of cancer cells spontaneously disseminated from nonmetastatic breast tumors as revealed by labeling with green fluorescent protein. Clin. Cancer Res. 9, 3808–3814 (2003).

    CAS  PubMed  Google Scholar 

  28. Suzuki, M., Mose, E. S., Montel, V. & Tarin, D. Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am. J. Pathol. 169, 673–681 (2006).

    Article  CAS  Google Scholar 

  29. Husemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58–68 (2008).

    PubMed  Google Scholar 

  30. Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 120, 2030–2039 (2010).

    Article  CAS  Google Scholar 

  31. Meng, S. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004).

    Article  Google Scholar 

  32. Sargent, D. J. et al. End points for colon cancer adjuvant trials: observations and recommendations based on individual patient data from 20,898 patients enrolled onto 18 randomized trials from the ACCENT Group. J. Clin. Oncol. 25, 4569–4574 (2007).

    Article  Google Scholar 

  33. Saphner, T., Tormey, D. C. & Gray, R. Annual hazard rates of recurrence for breast cancer after primary therapy. J. Clin. Oncol. 14, 2738–2746 (1996).

    Article  CAS  Google Scholar 

  34. Retsky, M. W., Demicheli, R., Hrushesky, W. J., Baum, M. & Gukas, I. D. Dormancy and surgery-driven escape from dormancy help explain some clinical features of breast cancer. APMIS 116, 730–741 (2008).

    Article  CAS  Google Scholar 

  35. Hanin, L. & Korosteleva, O. Does extirpation of the primary breast tumor give boost to growth of metastases? Evidence revealed by mathematical modeling. Math. Biosci. 223, 133–141 (2010).

    Article  Google Scholar 

  36. Riethmuller, G. & Klein, C. A. Early cancer cell dissemination and late metastatic relapse: clinical reflections and biological approaches to the dormancy problem in patients. Semin. Cancer Biol. 11, 307–311 (2001).

    Article  CAS  Google Scholar 

  37. Demicheli, R., Terenziani, M. & Bonadonna, G. Estimate of tumor growth time for breast cancer local recurrences: rapid growth after wake-up? Breast Cancer Res. Treat. 51, 133–137 (1998).

    Article  CAS  Google Scholar 

  38. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

    Article  CAS  Google Scholar 

  39. Ragaz, J. et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N. Engl. J. Med. 337, 956–962 (1997).

    Article  CAS  Google Scholar 

  40. Overgaard, M. et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. N. Engl. J. Med. 337, 949–955 (1997).

    Article  CAS  Google Scholar 

  41. Slade, M. J. et al. Comparison of bone marrow, disseminated tumour cells and blood-circulating tumour cells in breast cancer patients after primary treatment. Br. J. Cancer 100, 160–166 (2009).

    Article  CAS  Google Scholar 

  42. Wikman, H., Vessella, R. & Pantel, K. Cancer micrometastasis and tumour dormancy. APMIS 116, 754–770 (2008).

    Article  CAS  Google Scholar 

  43. Flores, L. M. et al. Improving the yield of circulating tumour cells facilitates molecular characterisation and recognition of discordant HER2 amplification in breast cancer. Br. J. Cancer 102, 1495–1502 (2010).

    Article  CAS  Google Scholar 

  44. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    Article  CAS  Google Scholar 

  45. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  46. Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nature Rev. Cancer 4, 448–456 (2004).

    Article  CAS  Google Scholar 

  47. Kendal, W. S. Chance mechanisms affecting the burden of metastases. BMC Cancer 5, 138 (2005).

    Article  Google Scholar 

  48. Chambers, A. F. Influence of diet on metastasis and tumor dormancy. Clin. Exp. Metastasis 26, 61–66 (2009).

    Article  CAS  Google Scholar 

  49. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

  50. Fisher, B. et al. Five versus more than five years of tamoxifen therapy for breast cancer patients with negative lymph nodes and estrogen receptor-positive tumors. J. Natl Cancer Inst. 88, 1529–1542 (1996).

    Article  CAS  Google Scholar 

  51. Fisher, B., Dignam, J., Bryant, J. & Wolmark, N. Five versus more than five years of tamoxifen for lymph node-negative breast cancer: updated findings from the National Surgical Adjuvant Breast and Bowel Project B-14 randomized trial. J. Natl Cancer Inst. 93, 684–690 (2001).

    Article  CAS  Google Scholar 

  52. Stewart, H. J. et al. Randomised comparison of 5 years of adjuvant tamoxifen with continuous therapy for operable breast cancer. The Scottish Cancer Trials Breast Group. Br. J. Cancer 74, 297–299 (1996).

    Article  CAS  Google Scholar 

  53. Tormey, D. C., Gray, R. & Falkson, H. C. Postchemotherapy adjuvant tamoxifen therapy beyond five years in patients with lymph node-positive breast cancer. Eastern Cooperative Oncology Group. J. Natl Cancer Inst. 88, 1828–1833 (1996).

    Article  CAS  Google Scholar 

  54. Delozier, T. et al. Delayed adjuvant tamoxifen: ten-year results of a collaborative randomized controlled trial in early breast cancer (TAM-02 trial). Ann. Oncol. 11, 515–519 (2000).

    Article  CAS  Google Scholar 

  55. Goss, P. E. et al. A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N. Engl. J. Med. 349, 1793–1802 (2003).

    Article  CAS  Google Scholar 

  56. Goss, P. E. et al. Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA.17. J. Natl Cancer Inst. 97, 1262–1271 (2005).

    Article  CAS  Google Scholar 

  57. Goss, P. E. et al. Late extended adjuvant treatment with letrozole improves outcome in women with early-stage breast cancer who complete 5 years of tamoxifen. J. Clin. Oncol. 26, 1948–1955 (2008).

    Article  CAS  Google Scholar 

  58. Sabnis, G., Goloubeva, O., Gilani, R., Macedo, L. & Brodie, A. Sensitivity to the aromatase inhibitor letrozole is prolonged after a “break” in treatment. Mol. Cancer Ther. 9, 46–56 (2010).

    Article  CAS  Google Scholar 

  59. Moy, B. & Goss, P. E. TEACH: Tykerb evaluation after chemotherapy. Clin. Breast Cancer 7, 489–492 (2007).

    Article  CAS  Google Scholar 

  60. Tsao, H., Cosimi, A. B. & Sober, A. J. Ultra-late recurrence (15 years or longer) of cutaneous melanoma. Cancer 79, 2361–2370 (1997).

    Article  CAS  Google Scholar 

  61. Farrar, J. D. et al. Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-γ in establishing and maintaining the tumor-dormant state. J. Immunol. 162, 2842–2849 (1999).

    CAS  PubMed  Google Scholar 

  62. Muller-Hermelink, N. et al. TNFR1 signaling and IFN-γ signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13, 507–518 (2008).

    Article  Google Scholar 

  63. Quesnel, B. Tumor dormancy and immunoescape. APMIS 116, 685–694 (2008).

    Article  Google Scholar 

  64. Zhu, D., Corral, L. G., Fleming, Y. W. & Stein, B. Immunomodulatory drugs Revlimid (lenalidomide) and CC-4047 induce apoptosis of both hematological and solid tumor cells through NK cell activation. Cancer Immunol. Immunother. 57, 1849–1859 (2008).

    Article  CAS  Google Scholar 

  65. Delea, T. E. et al. Cost-effectiveness of extended adjuvant letrozole therapy after 5 years of adjuvant tamoxifen therapy in postmenopausal women with early-stage breast cancer. Am. J. Manag. Care 12, 374–386 (2006).

    PubMed  Google Scholar 

  66. Chapman, J. A. et al. Competing causes of death from a randomized trial of extended adjuvant endocrine therapy for breast cancer. J. Natl Cancer Inst. 100, 252–260 (2008).

    Article  Google Scholar 

  67. Whelan, T. J. et al. Assessment of quality of life in MA.17: a randomized, placebo-controlled trial of letrozole after 5 years of tamoxifen in postmenopausal women. J. Clin. Oncol. 23, 6931–6940 (2005).

    Article  CAS  Google Scholar 

  68. Pantel, K., Braun, S., Schlimok, G. & Riethmuller, G. Micrometastatic tumour cells in bone marrow in colorectal cancer. Lancet 341, 501 (1993).

    Article  CAS  Google Scholar 

  69. Pantel, K. et al. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J. Natl Cancer Inst. 85, 1419–1424 (1993).

    Article  CAS  Google Scholar 

  70. Murphy, J. E. & Ryan, D. P. American Society of Clinical Oncology 2010 colorectal update. Expert Rev. Anticancer Ther. 10, 1371–1373 (2010).

    Article  Google Scholar 

  71. Allegra, C. J. et al. Initial safety report of NSABP C-08: a randomized phase III study of modified FOLFOX6 with or without bevacizumab for the adjuvant treatment of patients with stage II or III colon cancer. J. Clin. Oncol. 27, 3385–3390 (2009).

    Article  CAS  Google Scholar 

  72. Wolmark, N. et al. A phase III trial comparing mFOLFOX6 to mFOLFOX6 plus bevacizumab in stage II or III carcinoma of the colon: results of NSABP Protocol C-08. J. Clin. Oncol. Abstr. 27, LBA4 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

P.E.G. is supported by the Avon Foundation for Women in New York, USA. A.F.C. is Canada Research Chair in Oncology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann F. Chambers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Ann F. chambers's homepage

ATLAS

Surveillance, Epidemiology and End Results (SEER)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goss, P., Chambers, A. Does tumour dormancy offer a therapeutic target?. Nat Rev Cancer 10, 871–877 (2010). https://doi.org/10.1038/nrc2933

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2933

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer