Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Cancer imaging by optical coherence tomography: preclinical progress and clinical potential

Abstract

The past decade has seen dramatic technological advances in the field of optical coherence tomography (OCT) imaging. These advances have driven commercialization and clinical adoption in ophthalmology, cardiology and gastrointestinal cancer screening. Recently, an array of OCT-based imaging tools that have been developed for preclinical intravital cancer imaging applications has yielded exciting new capabilities to probe and to monitor cancer progression and response in vivo. Here, we review these results, forecast the future of OCT for preclinical cancer imaging and discuss its exciting potential to translate to the clinic as a tool for monitoring cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microstructural OCT imaging of tumours.
Figure 2: Imaging of tumour angiogenesis using OCT.

Similar content being viewed by others

References

  1. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    Article  CAS  Google Scholar 

  2. Bouma, B. E., Yun, S.-H., Vakoc, B. J., Suter, M. J. & Tearney, G. J. Fourier-domain optical coherence tomography: recent advances toward clinical utility. Curr. Opin. Biotechnol. 20, 111–118 (2009).

    Article  CAS  Google Scholar 

  3. Wojtkowski, M. High-speed optical coherence tomography: basics and applications. Appl. Opt. 49, D30–D61 (2010).

    Article  Google Scholar 

  4. Zysk, A. M., Nguyen, F. T., Oldenburg, A. L., Marks, D. L. & Boppart, S. A. Optical coherence tomography: a review of clinical development from bench to bedside. J. Biomed. Opt. 12, 051403 (2007).

    Article  Google Scholar 

  5. Gabriele, M. L. et al. Optical coherence tomography: history, current status, and laboratory work. Invest. Ophthalmol. Vis. Sci. 52, 2425–2436 (2011).

    Article  Google Scholar 

  6. Suter, M. J. et al. Intravascular optical imaging technology for investigating the coronary artery. JACC.Cardiovasc. Imaging 4, 1022–1039 (2011).

    Article  Google Scholar 

  7. Leunig, M. et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 52, 6553–6560 (1992).

    CAS  PubMed  Google Scholar 

  8. Brown, E., Munn, L. L., Fukumura, D. & Jain, R. K. In vivo imaging of tumors. Cold Spring Harb. Protoc. 2010 (doi:10.1101/pdb.prot5452).

  9. Hak, S., Reitan, N., Haraldseth, O. & de Lange Davies, C. Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles. Angiogenesis 13, 113–130 (2010).

    Article  Google Scholar 

  10. Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Med. 15, 1219–1223 (2009).

    Article  CAS  Google Scholar 

  11. Winkler, A. et al. In vivo, dual-modality OCT/LIF imaging using a novel VEGF receptor-targeted NIR fluorescent probe in the AOM-treated mouse model. Mol. Imaging Biol. 13, 1173–1182 (2010).

    Article  Google Scholar 

  12. Winkler, A., Rice, P., Drezek, R. & Barton, J. Quantitative tool for rapid disease mapping using optical coherence tomography images of azoxymethane-treated mouse colon. J. Biomed. Opt. 15, 041512 (2010).

    Article  Google Scholar 

  13. Jugold, M. et al. Volumetric high-frequency Doppler ultrasound enables the assessment of early antiangiogenic therapy effects on tumor xenografts in nude mice. Eur. Radiol. 18, 753–758 (2008).

    Article  Google Scholar 

  14. Badea, C. T., Drangova, M., Holdsworth, D. W. & Johnson, G. A. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys. Med. Biol. 53, R319–R350 (2008).

    Article  CAS  Google Scholar 

  15. Condeelis, J. & Weissleder, R. In vivo imaging in cancer. Cold Spring Harb. Perspect. Biol. 2, a003848 (2010).

    Article  CAS  Google Scholar 

  16. Yoshioka, K. et al. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim. Biophys. Acta 1289, 5–9 (1996).

    Article  Google Scholar 

  17. O'Neil, R., Wu, L. & Mullani, N. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Mol. Imaging Biol. 7, 388–392 (2005).

    Article  Google Scholar 

  18. Sheth, R. A., Josephson, L. & Mahmood, U. Evaluation and clinically relevant applications of a fluorescent imaging analog to fluorodeoxyglucose positron emission tomography. J. Biomed. Opt. 14, 064014–064018 (2009).

    Article  Google Scholar 

  19. Nitin, N. et al. Molecular imaging of glucose uptake in oral neoplasia following topical application of fluorescently labeled deoxy-glucose. Int. J. Cancer 124, 2634–2642 (2008).

    Article  Google Scholar 

  20. Corish, P. & Tyler-Smith, C. Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng. 12, 1035–1040 (1999).

    Article  CAS  Google Scholar 

  21. Elliott, G., McGrath, J. & Crockett-Torabi, E. Green fluorescent protein: a novel viability assay for cryobiological applications. Cryobiology 40, 360–369 (2000).

    Article  CAS  Google Scholar 

  22. Baumstark-Khan, C. et al. Green Fluorescent Protein (GFP) as a marker for cell viability after UV irradiation. J. Fluoresc. 9, 37–43 (1999).

    Article  Google Scholar 

  23. Chung, E. et al. Secreted gaussia luciferase as a biomarker for monitoring tumor progression and treatment response of systemic metastases. PLoS ONE 4, e8316 (2009).

    Article  Google Scholar 

  24. Hagendoorn, J. et al. Onset of abnormal blood and lymphatic vessel function and interstitial hypertension in early stages of carcinogenesis. Cancer Res. 66, 3360–3364 (2006).

    Article  CAS  Google Scholar 

  25. Jain, R. K. Taming vessels to treat cancer. Sci. Am. 298, 56–63 (2008).

    Article  Google Scholar 

  26. Isaka, N., Padera, T., Hagendoorn, J., Fukumura, D. & Jain, R. K. Peritumor lymphatics induced by vascular endothelial growth factor-C exhibit abnormal function. Cancer Res. 64, 4400–4404 (2004).

    Article  CAS  Google Scholar 

  27. Jung, Y., Zhi, Z. & Wang, R. Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo. J. Biomed. Opt. 15, 050501–050503 (2010).

    Article  Google Scholar 

  28. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  29. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  Google Scholar 

  30. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

    Article  CAS  Google Scholar 

  31. Hu, S. & Wang, L. V. Photoacoustic imaging and characterization of the microvasculature. J. Biomed. Opt. 15, 011101 (2010).

    Article  Google Scholar 

  32. Wang, L. V. Multiscale photoacoustic microscopy and computed tomography. Nature Photonics 3, 503–509 (2009).

    Article  CAS  Google Scholar 

  33. Su, J. L. et al. Advances in clinical and biomedical applications of photoacoustic imaging. Expert Opin. Med. Diagn. 4, 497–510 (2010).

    Article  Google Scholar 

  34. Li, M.-L. et al. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc. IEEE 96, 481–489 (2008).

    Article  CAS  Google Scholar 

  35. Brown, E. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nature Med. 7, 864–868 (2001).

    Article  CAS  Google Scholar 

  36. Boppart, S. A., Oldenburg, A. L., Xu, C. & Marks, D. L. Optical probes and techniques for molecular contrast enhancement in coherence imaging. J. Biomed. Opt. 10, 041208 (2005).

    Article  Google Scholar 

  37. de Boer, J. & Milner, T. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Opt. 7, 359–371 (2002).

    Article  Google Scholar 

  38. Farhat, G., Mariampillai, A., Yang, V. X. D., Czarnota, G. J. & Kolios, M. C. Detecting apoptosis using dynamic light scattering with optical coherence tomography. J. Biomed. Opt. 16, 070505 (2012).

    Article  Google Scholar 

  39. Sufan, R. et al. Oxygen-independent degradation of HIF-α via bioengineered VHL tumour suppressor complex. EMBO Mol. Med. 1, 66–78 (2009).

    Article  CAS  Google Scholar 

  40. Skala, M., Fontanella, A., Lan, L., Izatt, J. & Dewhirst, M. Longitudinal optical imaging of tumor metabolism and hemodynamics. J. Biomed. Opt. 15, 011112 (2010).

    Article  Google Scholar 

  41. Standish, B. et al. Interstitial doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study. Cancer Res. 68, 9987–9995 (2008).

    Article  CAS  Google Scholar 

  42. Standish, B. A. et al. Interstitial Doppler optical coherence tomography monitors microvascular changes during photodynamic therapy in a Dunning prostate model under varying treatment conditions. J. Biomed. Opt. 12, 034022 (2007).

    Article  Google Scholar 

  43. Standish, B. A. et al. in Gastrointestinal Endoscopy 326–333 (Mosby Yearbook, 2007).

    Google Scholar 

  44. Li, H. et al. Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy. Lasers Surg. Med. 38, 754–761 (2006).

    Article  Google Scholar 

  45. Pircher, A. et al. Biomarkers in tumor angiogenesis and anti-angiogenic therapy. Int. J. Mol. Sci. 12, 7077–7099 (2011).

    Article  CAS  Google Scholar 

  46. Jain, R. K. et al. Biomarkers of response and resistance to antiangiogenic therapy. Nature Rev. Clin. Oncol. 6, 327–338 (2009).

    Article  CAS  Google Scholar 

  47. Batchelor, T. T. et al. Phase II study of cediranib, an oral pan–vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol. 28, 2817–2823 (2010).

    Article  CAS  Google Scholar 

  48. Sorensen, A. G. et al. A “Vascular Normalization Index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 69, 5296–5300 (2009).

    Article  CAS  Google Scholar 

  49. Sorensen, A. G. et al. Increased survival of glioblastoma patients who respond to anti-angiogenic therapy with elevated blood perfusion. Cancer Res. 72, 402–407 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

US National Institutes of Health grants 5K25CA127465 (to B.J.V.), P01-CA080124 (to R.K.J. and D.F.), R01-CA126642 (to R.K.J.), R01-CA096915 (to D.F.), S10-RR027070 (to D.F.), a Federal Share Income Grant (to R.K.J. and D.F.), and Department of Defense Breast Cancer Research Innovator Award W81XWH-10-1-0016 (to R.K.J.). This project was supported by the Center for Biomedical OCT Research and Translation through Grant Number P41EB015903, awarded by the National Center for Research Resources and the National Institute of Biomedical Imaging and Bioengineering of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Vakoc.

Ethics declarations

Competing interests

B.J.V. and B.E.B. are inventors on patents, owned by the Massachusetts General Hospital, USA, related to the imaging apparatus used in this research. R.K.J. receives research grant funding from Dyax, MedImmune and Roche; is a consultant for Dyax and Noxxon; is on the Scientific Advisory Boards of Enlight, SynDevRx; is on the Board of Trustees of H&Q Capital Management; and is a cofounder of Xtuit Pharmaceuticals. D.F. declares no competing financial interests.

Related links

FURTHER INFORMATION

Benjamin J. Vakoc's homepage

Supplementary information

Supplementary information S1 (movie)

Time-lapse angiography and microstructural imaging of tumours in response to VEGFR2 blockade (MOV 2613 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vakoc, B., Fukumura, D., Jain, R. et al. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nat Rev Cancer 12, 363–368 (2012). https://doi.org/10.1038/nrc3235

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3235

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer