Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dissecting tumour pathophysiology using intravital microscopy

Key Points

  • A solid tumour is an organ-like structure that consists of cancer cells and host stromal cells embedded in an extracellular matrix and nourished by a vascular network. Intravital microscopy (IVM) has provided unprecedented molecular, anatomical and functional insights into the inner workings of this organ and provided a means for testing the efficacy of various therapies.

  • IVM is a powerful optical imaging technique that allows continuous non-invasive monitoring of molecular and cellular processes in intact living tissue with 1–10 μm resolution. Such resolution is currently not possible with non-optical techniques.

  • IVM requires an appropriate animal model, a molecular probe (usually fluorescent), a microscope equipped with a digital camera detection system, an image acquisition system, and a computer to process and analyse the data to extract parameters of interest.

  • Molecular imaging has revealed heterogeneity in the tumour microenvironment (for example, pO2 and pH) and the delivery of therapeutics (micro-pharmacokinetics). The most celebrated applications of molecular imaging include measurement of promoter activity, enzyme activity and gene expression in vivo.

  • Cellular imaging has uncovered key steps in the spread of cancer from one site to the next (invasion and metastasis), and barriers to various cell-based therapies (for example, immunotherapy and gene therapy). Cellular imaging has also allowed measurement of interactions among various subpopulations of cells in a tumour.

  • Anatomical imaging has allowed quantification of morphological abnormalities in tumour vessels, as well as the size of pores in their walls.

  • Functional imaging has revealed that tumour blood flow, vascular permeability, interstitial diffusion, convection and binding are spatially and temporally heterogeneous in tumours, depend on the host–tumour interactions, and change during the course of treatment. Functional lymphatics are present only in the tumour margin and the peri-tumour tissue.

  • IVM has revealed that certain direct and indirect anti-angiogenic treatments can 'normalize' the abnormal tumour vessels so that they become more efficient. This finding underscores the importance of optimal dose and scheduling in combination therapy.

  • With the availability of hand-held microscopes and safe (Food and Drug Administration approved) molecular probes, IVM has the potential to become a useful clinical tool to monitor integrative pathophysiology and the response of optically accessible tumours to various therapies in cancer patients.

Abstract

For a systemically administered therapeutic agent to reach neoplastic cells, it must enter the blood circulation, cross the vessel wall, move through the extracellular matrix and avoid getting cleared by the lymphatics. In tumours, each of these barriers is abnormal, changes with space and time, and depends on host–tumour interactions. Intravital microscopy has provided unprecedented molecular, cellular, anatomical and functional insights into these barriers and has revealed new approaches to improved detection and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four requirements for intravital microscopy.
Figure 2: Molecular imaging.
Figure 3: Cellular imaging.
Figure 4: Anatomical imaging.
Figure 5: Functional imaging.
Figure 6: Imaging therapeutic responses.

Similar content being viewed by others

References

  1. Jain, R. K., Schlenger, K., Hockel, M. & Yuan, F. Quantitative angiogenesis assays: progress and problems. Nature Med. 3, 1203–1208 (1997).

    CAS  PubMed  Google Scholar 

  2. Jain, R. K., Munn, L. L. & Fukumura, D. in Tumor Models in Cancer Research (ed. Teicher, B. A.) 647–671 (Humana, Totowa, 2001).

    Google Scholar 

  3. Brown, E. B. et al. In vivo measurement of gene expression, angiogenesis, and physiological function in tumors using multiphoton laser scanning microscopy. Nature Med. 7, 864–868 (2001).First and comprehensive application of multi-photon laser-scanning microscopy for molecular, cellular, anatomical and functional imaging of tumors in vivo.

    CAS  PubMed  Google Scholar 

  4. Padera, T. P., Stoll, B. R., So, P. T. C. & Jain, R. K. High-speed intravital multiphoton laser scanning microscopy of microvasculature, lymphatics, and leukocyte-endothelial interactions. Mol. Imaging 1, 9–15 (2002).High-speed image acquisition by multi-photon laser-scanning microscopy for intravital microscopy.

    PubMed  Google Scholar 

  5. Nugent, L. J. & Jain, R. K. Extravascular diffusion in normal and neoplastic tissues. Cancer Res. 44, 238–244 (1984).

    CAS  PubMed  Google Scholar 

  6. Yuan, F. et al. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial window. Cancer Res. 54, 4564–4568 (1994).Establishment of cranial window models. Revealed intra- and inter-tumour heterogeneity of vascular permeability.

    CAS  PubMed  Google Scholar 

  7. Jain, R. K. Barriers to drug delivery in solid tumors. Sci. Am. 271, 58–65 (1994).

    CAS  PubMed  Google Scholar 

  8. Martin, G. R. & Jain, R. K. Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res. 54, 5670–5674 (1994).

    CAS  PubMed  Google Scholar 

  9. Torres-Filho, I. P., Leunig, M., Yuan, F., Intaglietta, M. & Jain, R. K. Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc. Natl Acad. Sci. USA 91, 2081–2085 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med. 3, 177–182 (1997).First high spatial-resolution dual measurements of tumour pH and pO 2 . Revealed lack of correlation between tissue pH and pO 2 in solid tumours.

    CAS  PubMed  Google Scholar 

  11. Fukumura, D. et al. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res. 61, 6020–6024 (2001).First simultaneous measurement of gene promoter activity and microenvironmental parameters. Revealed regulation of VEGF by tissue pO 2 and pH by distinct pathways.

    CAS  PubMed  Google Scholar 

  12. Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nature Rev. Cancer 2, 11–18 (2002).

    CAS  Google Scholar 

  13. Becker, A. et al. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nature Biotechnol. 19, 327–331 (2001).

    CAS  Google Scholar 

  14. Zhang, J., Ma, Y., Taylor, S. S. & Tsien, R. Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl Acad. Sci. USA 98, 14997–15002 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ting, A. Y., Kain, K. H., Klemke, R. L. & Tsien, R. Y. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc, Natl Acad. Sci. USA 98, 15003–15008 (2001).References 14 and 15 are good examples of recent advances in molecular imaging probes. These are fusion protein reporters in which CFP and YFP are attached to a specific kinase-binding domain. Once the signalling pathway of interest is activated, the reporter fusion protein changes conformation and alters its fluorescence emission owing to fluorescence resonance energy transfer. By using ratio imaging, these probes allow quantitation of cellular level response/signalling.

    CAS  Google Scholar 

  16. Fukumura, D. et al. Tumor induction of VEGF promoter in stromal cells. Cell 94, 715–725 (1998).First in vivo visualization of gene promoter activity. Revealed VEGF activation in host stromal cells by tumour cells and underscored the importance of host–tumour interactions.

    CAS  PubMed  Google Scholar 

  17. Tsuzuki, Y. et al. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia inducible factor-1α hypoxia response element VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 60, 6248–6252 (2000).

    CAS  PubMed  Google Scholar 

  18. Gohongi, T. et al. Tumor–host interactions in the gallbladder suppress distal angiogenesis and tumor growth: involvement of transforming growth factor-β1 Nature Med. 5, 1203–1208 (1999).

    CAS  PubMed  Google Scholar 

  19. Gullino, P. in Cancer (ed. Becker, F.) 327–354 (Plenum, New York, 1975).

    Google Scholar 

  20. Fidler, I. Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg. Oncol. Clin. N. Am. 10, 257–269 (2001).

    CAS  PubMed  Google Scholar 

  21. Greer, L. & Szalay, A. Imaging of light emission from the expression of luciferase in living cells and organisms: a review. Luminescence 17, 43–74 (2002).

    CAS  PubMed  Google Scholar 

  22. Terskikh, A. et al. 'Fluorescent timer': protein that changes color with time. Science 290, 1585–1588 (2000).

    CAS  PubMed  Google Scholar 

  23. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl Acad. Sci. USA 97, 11984–11989 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Marchant, J. S. et al. Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling. Nature Biotechnol. 19, 645–649 (2001).

    CAS  Google Scholar 

  25. Wood, S. Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. Arch. Pathol. 66, 550–568 (1958).

    Google Scholar 

  26. Zeidman, I. The fate of circulating tumor cells. 1. Passage of cells through capillaries. Cancer Res. 21, 38–39 (1961).

    CAS  PubMed  Google Scholar 

  27. Chambers, A. F. et al. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev. 14, 279–301 (1995).

    CAS  PubMed  Google Scholar 

  28. Li, C.-Y. et al. Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J. Natl Cancer Inst. 92, 143–147 (2000).

    CAS  PubMed  Google Scholar 

  29. Chang, Y. S. et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc. Natl Acad. Sci USA 97, 14608–14613 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wyckoff, J. B., Jones, J. G., Condeelis, J. S. & Segall, J. E. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 60, 2504–2511 (2000).

    CAS  PubMed  Google Scholar 

  31. Chishima, T. et al. Cancer invasion and micrometastasis visulaized in live tissue by green fluorescenct protein expression. Cancer Res. 57, 2042–2047 (1997).

    CAS  PubMed  Google Scholar 

  32. Naumov, G. N. et al. Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J. Cell Sci. 112, 1835–1842 (1999).References 27–32 are representative studies using GFP-labelled cells to understand various steps in metastasis.

    CAS  PubMed  Google Scholar 

  33. Jain, R. K. & Fenton, B. T. Intra-tumor lymphatic vessels: a case of mistaken identity or malfunction. J. Natl Cancer Inst 94, 417–421 (2002).

    PubMed  Google Scholar 

  34. Ohkubo, C., Bigos, D. & Jain, R. K. Interleukin 2 induced leukocyte adhesion to the normal and tumor microvascular endothelium in vivo and its inhibition by dextran sulfate: implications for vascular leak syndrome. Cancer Res. 51, 1561–1563 (1991).

    CAS  PubMed  Google Scholar 

  35. Wu, N. Z., Klitzman, B., Dodge, R. & Dewhirst, M. W. Diminished leukocyte–endothelium interaction in tumor microvessels. Cancer Res. 52, 4265–4268 (1992).

    CAS  PubMed  Google Scholar 

  36. Fukumura, D. et al. Tumor necrosis factor-α-induced leukocyte adhesion in normal and tumor vessels: effect of tumor type, transplantation site, and host strain. Cancer Res. 55, 4824–4829 (1995).References 34–36 are representative works that show heterogeneous leukocyte–endothelium interactions in tumours.

    CAS  PubMed  Google Scholar 

  37. Jain, R. K. et al. Leukocyte–endothelial adhesion and angiogenesis in tumors. Cancer Metastasis Rev. 15, 195–204 (1996).

    CAS  PubMed  Google Scholar 

  38. Fukumura, D., Yuan, F., Endo, M. & Jain, R. K. Role of nitric oxide in tumor microcirculation: blood flow, vascular permeability, and leukocyte–endothelial interactions. Am. J. Pathol. 150, 713–725 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fukumura, D., Yuan, F., Monsky, W. L., Chen, Y. & Jain, R. K. Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am. J. Pathol. 151, 679–688 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jain, R. K., Munn, L. L., Fukumura, D. & Melder, R. J. in Methods in Molecular Medicine Vol. 18: Tissue Engineering Methods and Protocols (eds Morgan, J. R. & Yarmush, M. L.) 553–575 (Humana, Totowa, 1998).

    Google Scholar 

  41. Sasaki, A., Melder, R. J., Whiteside, T. L., Herberman, R. B. & Jain, R. K. Preferential localization of human adherent lymphokine-activated killer cells in tumor microcirculation. J. Natl Cancer Inst. 83, 433–437 (1991).

    CAS  PubMed  Google Scholar 

  42. Melder, R. J., Salehi, H. A. & Jain, R. K. Interaction of activated natural killer cells with normal and tumor vessels in cranial windows in mice. Microvasc Res. 50, 35–44 (1995).

    CAS  PubMed  Google Scholar 

  43. Melder, R. J. et al. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nature Med. 2, 992–997 (1996).

    CAS  PubMed  Google Scholar 

  44. Detmar, M. et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J. Invest. Dermatol. 111, 1–6 (1998).

    CAS  PubMed  Google Scholar 

  45. Jain, R. K. et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA 95, 10820–10825 (1998).First demonstration of 'normalization' of tumour vasculature in response to anti-angiogenic treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kadambi, A. et al. Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment: role of VEGF-receptor 2 and host VEGF-A. Cancer Res. 61, 2404–2408 (2001).

    CAS  PubMed  Google Scholar 

  47. Melder, R. J., Yuan, J., Munn, L. L. & Jain, R. K. Erythrocytes enhance lymphocyte rolling and arrest in vivo. Microvasc Res. 59, 316–322 (2000).

    CAS  PubMed  Google Scholar 

  48. Yamada, S., Melder, R. J., Leunig, M., Ohkubo, C. & Jain, R. K. Leukocyte rolling increases with age. Blood 86, 4707–4708 (1995).

    CAS  PubMed  Google Scholar 

  49. Yu, J. L. et al. Heterogeneous vascular dependence of tumor cell populations. Am. J. Pathol. 158, 1325–1334 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Groner, W. et al. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nature Med. 5, 1209–1213 (1999).

    CAS  PubMed  Google Scholar 

  51. Yuan, F. et al. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54, 3352–3356 (1994).

    CAS  PubMed  Google Scholar 

  52. Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl Acad. Sci. USA 93, 14765–14770 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Endrich, B., Reinhold, H. S., Gross, J. F. & Intaglietta, M. Tissue perfusion inhomogeneity during early tumor growth in rats. J. Natl Cancer Inst. 62, 387–395 (1979).

    CAS  PubMed  Google Scholar 

  54. Endrich, B., Intaglietta, M., Reinhold, H. S. & Gross, J. F. Hemodynamic characteristics in microcirculatory blood channels during early tumor growth. Cancer Res. 39, 17–23 (1979).References 53 and 54 described, for the first time, the use of IVM to measure temporal and spatial heterogeneity in tumour blood flow.

    CAS  PubMed  Google Scholar 

  55. Jain, R. K. Determinants of tumor blood flow: a review. Cancer Res. 48, 2641–2658 (1988).

    CAS  PubMed  Google Scholar 

  56. Gazit, Y., Berk, D. A., Leunig, M., Baxter, L. T. & Jain, R. K. Scale-invariant behavior and vascular network formation in normal and tumor tissue. Phys. Rev. Lett. 75, 2428–2431 (1995).

    CAS  PubMed  Google Scholar 

  57. Baish, J. W. & Jain, R. K. Fractals and cancer. Cancer Res. 60, 3683–3688 (2000).

    CAS  PubMed  Google Scholar 

  58. Izumi, Y., Xu, L., diTomaso, E., Fukumura, D. & Jain, R. K. Herceptin acts as an anti-angiogenic cocktail. Nature 416, 279–280 (2002).

    CAS  PubMed  Google Scholar 

  59. Leu, A. J., Berk, D. A., Lymboussaki, A., Alitalo, K. & Jain, R. K. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 60, 4324–4327 (2000).

    CAS  PubMed  Google Scholar 

  60. Padera, T. P., Yun, C.-O., Carreira, C. M. & Jain, R. K. Local mechanics and VEGF-C alter peri-tumor lymphatic function. Proc. Am. Assoc. Cancer Res. 41, 88 (2000).References 59 and 60 show the lack of functional lymphatics within tumours and lymphatic hyperplasia in the tumour margin.

  61. Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423–1425 (1997).

    CAS  PubMed  Google Scholar 

  62. Hobbs, S. K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and host microenvironment. Proc. Natl Acad. Sci. USA 95, 4607–4612 (1998).First determination of pore size in tumour vessels and how pore size is affected by host–tumour interactions and the microenvironment.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Monsky, W. L. et al. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res. 59, 4129–4135 (1999).

    CAS  PubMed  Google Scholar 

  64. Hashizume, H. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Jain, R. K. Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J. Control Release 74, 7–25 (2001).

    CAS  PubMed  Google Scholar 

  66. Leunig, M. et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 52, 6553–6560 (1992).

    CAS  PubMed  Google Scholar 

  67. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases: from genes to function to therapy. Nature 407, 249–257 (2000).

    CAS  PubMed  Google Scholar 

  68. Gerlowski, L. E. & Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31, 288–305 (1986).

    CAS  PubMed  Google Scholar 

  69. Yuan, F., Leunig, M., Berk, D. A. & Jain, R. K. Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc. Res. 45, 269–289 (1993).

    CAS  PubMed  Google Scholar 

  70. Lichtenbeld, H. C., Yuan, F., Michel, C. C. & Jain, R. K. Perfusion of single tumor microvessels: application to vascular permeability measurement. Microcirculation 3, 349–357 (1996).References 68–70 describe vascular permeability measurements in tumour vessels and demonstrate the lack of convection.

    CAS  PubMed  Google Scholar 

  71. Jain, R. K. & Munn, L. L. Leaky vessels? Call Ang1! Nature Med. 6, 131–132 (2000).

    CAS  PubMed  Google Scholar 

  72. Yuan, F. et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cut-off size. Cancer Res. 55, 3752–3756 (1995).

    CAS  PubMed  Google Scholar 

  73. Dellian, M., Yuan, F., Trubetskoy, V., Torchilin, V. & Jain, R. K. Vascular permeability in a human tumor xenograft: molecular charge dependence. Br. J. Cancer 82, 1513–1518 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Thurston, G. et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J. Clin. Invest. 101, 1401–1413 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chary, S. R. & Jain, R. K. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl Acad. Sci. USA 86, 5385–5389 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Berk, D. A., Yuan, F., Leunig, M. & Jain, R. K. Direct in vivo measurement of targeted binding in a human tumor xenograft. Proc. Natl Acad. Sci. USA 94, 1785–1790 (1997).References 75 and 76 provided the first measurements of convection, diffusion and binding of molecules in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Netti, P. A., Berk, D. A., Swartz, M. A., Grodzinsky, A. J. & Jain, R. K. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60, 2497–2503 (2000).

    CAS  PubMed  Google Scholar 

  78. Pluen, A. et al. Role of tumor–host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc. Natl Acad. Sci. USA 98, 4628–4633 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Leu, A. J., Berk, D. A., Yuan, F. & Jain, R. K. Flow velocity in the superficial lymphatic network of the mouse tail. Am. J. Physiol. 267, H1507–H1513 (1994).

    CAS  PubMed  Google Scholar 

  80. Berk, D. A., Swartz, M. A., Leu, A. J. & Jain, R. K. Transport in lymphatic capillaries. II. Microscopic velocity measurement with fluorescence photobleaching. Am. J. Physiol. 270, H330–H337 (1996).

    CAS  PubMed  Google Scholar 

  81. Swartz, M. A., Berk, D. A. & Jain, R. K. Transport in lymphatic capillaries. I. Macroscopic measurements using residence time distribution theory. Am. J. Physiol. 270, H324–H329 (1996).

    CAS  PubMed  Google Scholar 

  82. Lee, C. G. et al. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 60, 5565–5570 (2000).

    CAS  PubMed  Google Scholar 

  83. Hansen-Algenstaedt, N. et al. Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy. Cancer Res. 60, 4556–4560 (2000).

    CAS  PubMed  Google Scholar 

  84. Jain, R. K. Normalizing tumor vaculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature Med. 7, 987–989 (2001).

    CAS  PubMed  Google Scholar 

  85. Teicher, B. A. et al. Potentiation of cytotoxic therapies by TNP-470 and minocycline in mice bearing EMT-6 mammary carcinoma. Breast Cancer Res. Treat. 36, 227–236 (1995).

    CAS  PubMed  Google Scholar 

  86. Browder, T. et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60, 1878–1886 (2000).

    CAS  PubMed  Google Scholar 

  87. Murata, R., Nishimura, Y. & Hiraoka, M. An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 37, 1107–1113 (1997).

    CAS  PubMed  Google Scholar 

  88. Ma, J. et al. Pharmacodynamic-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470. Cancer Res. 61, 5491–5498 (2001).

    CAS  PubMed  Google Scholar 

  89. Huang, Q. et al. Noninvasive visualization of tumors in rodent dorsal skin window chambers: a novel model for evaluating anti-cancer therapies. Nature Biotechnol. 17, 1033–1035 (1999).

    CAS  Google Scholar 

  90. Vajkoczy, P., Ullrich, A. & Menger, M. Intravital fluorescence videomicroscopy to study tumor angiogenesis and microcirculation. Neoplasia 2, 53–61 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hoffman, R. M. Visualization of GFP-expressing tumors and metastasis in vivo. BioTechniques 30, 1016–1026 (2001).

    CAS  PubMed  Google Scholar 

  92. Huang, W. H., Aramburu, J., Douglas, P. S. & Izumo, S. Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nature Med. 6, 482–483 (2000).

    CAS  PubMed  Google Scholar 

  93. Garcia-Parajo, M. F., Koopman, M., van Dijk, E. M. H. P., Subramaniam, V. & van Hulst, N. F. The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection. Proc. Natl Acad. Sci. USA 98, 14392–14397 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Cotlet, M. et al. Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy. Proc. Natl Acad. Sci. USA 98, 14398–14403 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hadjantonakis, A. K. & Nagy, A. The color of mice: in the light of GFP-variant reporters. Histochem. Cell Biol. 115, 49–58 (2001).

    CAS  PubMed  Google Scholar 

  96. Mitchell, P. Turning the spotlight on cellular imaging. Nature Biotechnol. 19, 1013–1017 (2001).

    CAS  Google Scholar 

  97. van Roessel, P. & Brand, A. H. Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins. Nature Cell Biol. 4, E15–E20 (2002).

    CAS  PubMed  Google Scholar 

  98. Kleinfeld, D., Mitra, P. P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl Acad. Sci. USA 95, 15741–15746 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lendvai, B., Stern, E. A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).

    CAS  PubMed  Google Scholar 

  100. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Boppart, S. et al. High resolution optical coherence tomography-guided laser ablation of surgical tissue. J. Surg. Res. 82, 275–284 (1999).

    CAS  PubMed  Google Scholar 

  102. Boppart, S. et al. In vivo cellular optical coherence tomography imaging. Nature Med. 4, 861–865 (1998).

    CAS  PubMed  Google Scholar 

  103. Beaurepaire, E., Moreaux, L., Amblard, F. & Mertz, J. Combined scanning optical coherence and two-photon excited fluorescence microscopy. Optics Lett. 24, 969 (1999).

    CAS  Google Scholar 

  104. Delaney, P. M., Harris, M. R. & King, R. G. Novel microscopy using fibre optic confocal imaging and its suitability for subsurface blood vessel imaging in vivo. Clin. Exp. Pharmacol. Physiol. 20, 197–198 (1993).

    CAS  PubMed  Google Scholar 

  105. Helmchen, F., Fee, M. S., Tank, D. W. & Denk, W. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).Development of a miniature two-photon microscope.

    CAS  PubMed  Google Scholar 

  106. Shioda, T., Munn, L., Fenner, M., Jain, R. & Isselbacher, K. Early events of metastasis in the microcirculation involve changes in gene expression of cancer cells: tracking mRNA levels of metastasizing cancer cells in the chick embryo chorioallantoic membrane. Am. J. Pathol. 150, 2099–2112 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Jain, R. K. Delivery of molecular and cellular medicine to solid tumors. Microcirculation 4, 1–23 (1997).

    CAS  PubMed  Google Scholar 

  108. Ide, A. G., Baker, N. H. & Warren, S. L. Vascularization of the Brown–Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am. J. Roentgenol. 42, 891–899 (1939).

    Google Scholar 

  109. Dudar, T. E. & Jain, R. K. Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res. 44, 605–612 (1984).

    CAS  PubMed  Google Scholar 

  110. Algire, G. H. An adaptation of the transparent chamber technique to the mouse. J. Natl Cancer Inst. 4, 1–11 (1943).

    Google Scholar 

  111. Algire, G. H. Microscopic studies of the early growth of a transplantable melanoma of the mouse, using the transparent-chamber technique. J. Natl Cancer lnst. 4, 13–20 (1943).

    Google Scholar 

  112. Kligerman, M. M. & Henel, D. K. Some aspects of the microcirculation of a transplantable experimental tumor. Radiology 76, 810–817 (1961).

    Google Scholar 

  113. Reinhold, H. S. Improved microcirculation in irradiated tumours. Eur. J. Cancer 7, 273–280 (1971).

    CAS  PubMed  Google Scholar 

  114. Falkvoll, K. H., Rofstad, E. K., Brustad, T. & Marton, P. A transparent chamber for the dorsal skin fold of athymic mice. Exp. Cell Biol. 52, 260–268 (1984).

    CAS  PubMed  Google Scholar 

  115. Asaishi, K., Endrich, B., Gotz, A. & Messmer, K. Quantitative analysis of microvascular structure and function in the amelanotic melanoma A-Mel-3. Cancer Res. 41, 1898–1904 (1981).

    CAS  PubMed  Google Scholar 

  116. Yamura, H., Suzuki, M. & Sato, H. Transparent chamber in the rat skin for studies on microcirculation in cancer tissue. Gann 62, 177–185 (1971).

    CAS  PubMed  Google Scholar 

  117. Reinhold, H. S., Blachiwiecz, B. & Blok, A. Oxygenation and reoxygenation in 'Sandwich' tumours. Bibl. Anat. 15, 270–272 (1977).

    Google Scholar 

  118. Dewhirst, M. W. et al. Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int. J. Radiat. Oncol. Biol. Phys. 17, 91–99 (1989).

    CAS  PubMed  Google Scholar 

  119. Lutz, B. R., Fulton, G. P., Patt, D. I. & Handler, A. H. The growth rate of tumor transplants in the cheek pouch of the hamster (Mesocricetus auratus). Cancer Res. 10, 231–232 (1950).

    Google Scholar 

  120. Chute, R. N., Sommers, S. C. & Warren, S. Hetero-transplantation of human cancer. II. Hamster cheek pouch. Cancer Res. 12, 912–914 (1952).

    CAS  PubMed  Google Scholar 

  121. Toolan, H. W. Transplantable human neoplasms maintained in cortisone-treated laboratory animals: H. S. #1; H. Ep. #1; H. Ep. # 2; H. Ep. # 3; and H. Emb. Rh. #1. Cancer Res 14, 660–666 (1954).

    CAS  PubMed  Google Scholar 

  122. Goodall, C. M., Sanders, A. G. & Shubik, P. Studies of vascular patterns in living tumors with a transparent chamber inserted in hamster cheek pouch. J. Natl Cancer lnst. 35, 497–521 (1965).

    CAS  Google Scholar 

  123. Eddy, H. A. & Casarett, G. W. Development of the vascular system in the hamster malignant neurilemmoma. Microvasc. Res. 6, 63–82 (1973).

    CAS  PubMed  Google Scholar 

  124. Norrby, K., Jakobsson, A. & Sörbo, J. Quantitative angiogenesis in spreads of intact rat mesenteric windows. Microvasc. Res. 39, 341–348 (1990).

    CAS  PubMed  Google Scholar 

  125. Yanagi, K. & Ohsima, N. Angiogenic vascular growth in the rat peritoneal disseminated tumor model. Microvasc. Res. 51, 15–28 (1996).

    CAS  PubMed  Google Scholar 

  126. Heuser, L. S. & Miller, F. N. Differential macromolecular leakage from the vasculature of tumors. Cancer 57, 461–464 (1986).

    CAS  PubMed  Google Scholar 

  127. Monsky, W. L. et al. Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad vs. cranial tumors. Clin. Cancer Res 8, 1008–1013 (2002)

    CAS  PubMed  Google Scholar 

  128. Schmidt, J. et al. Reduced basal and stimulated leukocyte adherence in tumor endothelium of experimental pancreatic cancer. Int. J. Pancreatol. 26, 173–179 (1999).

    CAS  PubMed  Google Scholar 

  129. Tsuzuki, Y. et al. Pancreas microenvironment promotes VEGF expression and tumor growth: novel window models for pancreatic tumor angiogenesis and microcirculation. Lab. Invest. 81, 1439–1452 (2001).

    CAS  PubMed  Google Scholar 

  130. Funakoshi, N. et al. A new model of lung metastasis for intravital studies. Microvasc. Res. 59, 361–367 (2000).

    CAS  PubMed  Google Scholar 

  131. Luckè, B. & Schlumberger, H. The manner of growth of frog carcinoma, studied by direct microscopic examination of living intraocular transplants. J. Exp. Med. 70, 257–268 (1939).

    PubMed  PubMed Central  Google Scholar 

  132. Greene, H. S. N. The significance of heterologous transplantability of human cancer. Cancer 5, 24–44 (1952).

    CAS  PubMed  Google Scholar 

  133. Gimbrone, M. A. J. & Gullino, P. M. Angiogenic capacity of preneoplastic lesions of the murine mammary gland as a marker of neoplastic transformation. Cancer Res. 36, 2611–2620 (1976).

    PubMed  Google Scholar 

  134. Brem, S. S., Gullino, P. M. & Medina, D. Angiogenesis: a marker for neoplastic transformation of mammary papillary hyperplasia. Science 195, 880–882 (1977).

    CAS  PubMed  Google Scholar 

  135. Maiorana, A. & Gullino, P. M. Acquisition of angiogenic capacity and neoplastic transformation in the rat mammary gland. Cancer Res. 38, 4409–4414 (1978).

    CAS  PubMed  Google Scholar 

  136. Gimbrone, M. A. J., Cotran, R. S., Leapman, S. B. & Folkman, J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl Cancer lnst. 52, 413–427 (1974).

    Google Scholar 

  137. Ausprunk, D. H. & Folkman, J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14, 53–65 (1977).

    CAS  PubMed  Google Scholar 

  138. Muthukkaruppan, V. R. & Auerbach, R. Angiogenesis in the mouse cornea. Science 205, 1416–1418 (1979).

    CAS  PubMed  Google Scholar 

  139. Suit, H. & Shalek, R. Response of anoxic C3H mouse mammary carcinoma isotransplants (I-25mm3) to X-irradiation. J. Natl Cancer Inst. 31, 479–495 (1963).

    CAS  PubMed  Google Scholar 

  140. Dellian, M., Witwer, B. P., Salehi, H. A., Yuan, F. & Jain, R. K. Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am. J. Pathol. 149, 59–72 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Dewhirst, M. et al. Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumor hypoxia. Br. J. Cancer 79, 1717–1722 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kimura, H. et al. Fluctuations in red cell flux in tumor microvessels can lead to transient hyoxia and reoxygenation in tumor parenchyma. Cancer Res. 56, 5522–5528 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Brown, M. Dewhirst, M. Intaglietta, B. Seed, P. So and R. Weissleder for their helpful comments. This work was supported by National Institute of Health grants.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

bFGF

cathepsin B

CD31

CD105

ERBB2

E-selectin

HIF1α

ICAM1

PlGF

TNF-α

VCAM1

VEGF

VEGFC

VEGFR1

VEGFR2

Medscape DrugInfo

adriamycin

Herceptin

FURTHER INFORMATION

Edwin L. Steele Laboratory

Glossary

TRANS-ILLUMINATION

Microscope configuration in which the light passes from the illuminating condenser through the tissue and then into the objective lens. A green filter is often used to increase the contrast of haemoglobin. Applicable only for imaging in relatively thin tissues.

EPI-ILLUMINATION

Microscope configuration in which light comes from the objective lens to the tissue and is then collected by the same objective lens. This is useful for both fluorescent and bright-field (reflectance) microscopy. With the use of appropriate molecular probes and optical filters, specific molecular, cellular, anatomical and functional events can be detected.

CONFOCAL LASER-SCANNING MICROSCOPE

(CLSM). A high spatial-resolution fluorescence microscope that uses scanning laser light for excitation and a pinhole in the emission light path that detects a signal only from the focal plane. CLSMs can provide ∼1-μm three-dimensional resolution.

MULTI-PHOTON LASER-SCANNING MICROSCOPE

(MPLSM). A high spatial-resolution fluorescence microscope using low energy (long wavelength) photons that are produced by an infrared laser. Multi-photon excitation occurs only in a small volume in which the photons are focused. The long-wavelength photons and high signal-to-noise ratio allow subsurface imaging (∼700 μm) with ∼1-μm three-dimensional resolution, minimal photo-damage and longer probe lifetimes in thick samples.

FRACTAL ANALYSIS

A mathematical analysis for characterizing complex, repeating geometrical patterns at various scale lengths.

MICRO-LYMPHANGIOGRAPHY

An imaging technique to visualize functional lymphatic micro-vessels in vivo. Locally injected fluorescent macromolecules (such as fluorescein-isothiocyanate-conjugated dextran) are taken up by the lymphatics and can be visualized by intravital microscopy.

PORE CUT-OFF SIZE

Maximum size of particle that can cross the blood-vessel wall. In general, tumour vessels have a significantly larger pore cut-off size compared with their normal counterparts. Pore size depends on the host–tumour interactions and can change during tumour growth and response to therapy.

VASCULAR PERMEABILITY

A measure of the propensity of a molecule to extravasate from the vessel lumen to the tissue. Transport of systemically injected tracers, such as tetramethyl-rhodamine-labelled albumin, is monitored by intravital microscopy to estimate vascular permeability. Tumour vessels generally have high vascular permeability.

FLUORESCENCE RECOVERY AFTER PHOTOBLEACHING

(FRAP). An imaging technique to measure diffusion, convection and binding of fluorescent molecules. First, tissues are loaded with fluorescent molecules (typically fluorescein isothiocyanate labelled); strong laser light bleaches a pattern in the tissue and the recovery of fluorescence in the bleached pattern is monitored. The rate of recovery is proportional to diffusivity of the molecules in the tissue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, R., Munn, L. & Fukumura, D. Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2, 266–276 (2002). https://doi.org/10.1038/nrc778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing