Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Centrosome aberrations: cause or consequence of cancer progression?

Key Points

  • The centrosome nucleates microtubules; it is important for cell shape, motility and division. During S phase of the cell cycle, the single centrosome that is present in a G1-phase cell is duplicated. The two centrosomes then set up the poles of the mitotic spindle and each incipient daughter cell receives one centrosome.

  • The duplication and segregation cycles of centrosomes and chromosomes need to be coordinated to avoid chromosome missegregation or ploidy changes. The retinoblastoma pathway has been identified as one important link between centrosome duplication and chromosome replication.

  • Many tumours display numerical and structural centrosome aberrations. Extra copies of centrosomes could, in principle, arise through overduplication within a single cell cycle, through aborted cell division, cell fusion or de novo genesis. A growing body of evidence points to aborted division as an important cause of excessive centrosome numbers.

  • Cells that lack a functional p53 pathway are proposed to acquire multiple centrosomes through failure of a G1-phase checkpoint that should eliminate cells after aborted division. However, it has also been argued that p53 regulates centrosome duplication.

  • Centrosome aberrations can give rise to chromosomal instability and altered tissue architecture. Importantly, centrosome aberrations and chromosomal instability are expected to enhance each other.

  • Most multipolar divisions cause severe chromosome missegregation and therefore constitute lethal events. Occasionally, however, they might give rise to cells with chromosomal compositions that favour survival in the microenvironment of the tumour. In tumour cells, genes that are involved in alternative mechanisms for spindle formation might be upregulated or re-expressed. This might cause several centrosomes to coalesce and allow the formation of bipolar spindles, in spite of excessive centrosome numbers.

  • A better understanding of the origins and consequences of centrosome aberrations could lead to the development of novel diagnostic, prognostic or therapeutic approaches.

Abstract

Many human tumours show centrosome aberrations, indicating an underlying deregulation of centrosome structure, duplication or segregation. Centrosomes organize microtubule arrays throughout the cell cycle, thereby influencing both tissue architecture and the accuracy of chromosome segregation. But what are the origins of centrosomal abnormalities in tumours, and what impact do they have on the generation of invasive, genetically unbalanced cells during cancer progression?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cell cycle: a tale of two cycles.
Figure 2: Centrosomal abnormalities in human tumours.
Figure 3: Centrosome amplification.
Figure 4: The RB pathway and centrosome duplication.
Figure 5: Coalescence of centrosomes to two poles in a mitotic neuroblastoma cell.

Similar content being viewed by others

References

  1. Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Doxsey, S. Re-evaluating centrosome function. Nature Rev. Mol. Cell Biol. 2, 688–698 (2001).

    Article  CAS  Google Scholar 

  3. Lange, B. M. H. Integration of the centrosome in cell cycle control, stress response and signal transduction pathways. Curr. Opin. Cell Biol. 14, 35–43 (2002).

    CAS  PubMed  Google Scholar 

  4. Hinchcliffe, E. H. & Sluder, G. 'It takes two to tango': understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev. 15, 1167–1181 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Meraldi, P. & Nigg, E. A. The centrosome cycle. FEBS Lett. 521, 9–13 (2002).

    CAS  PubMed  Google Scholar 

  6. Hinchcliffe, E. H., Miller, F. J., Cham, M., Khodjakov, A. & Sluder, G. Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291, 1547–1550 (2001).Cell microsurgery is used to study the role of the centrosome during cell-cycle progression. This provocative study points to a crucial centrosome-related function at the G1–S transition.

    CAS  PubMed  Google Scholar 

  7. Pines, J. Four-dimensional control of the cell cycle. Nature Cell Biol. 1, E73–E79 (1999).

    CAS  PubMed  Google Scholar 

  8. Rieder, C. L., Faruki, S. & Khodjakov,A. The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. 11, 413–419 (2001).

    CAS  PubMed  Google Scholar 

  9. Sibon, O. C., Kelkar, A., Lemstra, W. & Theurkauf, W. E. DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nature Cell Biol. 2, 90–95 (2000).

    CAS  PubMed  Google Scholar 

  10. Boveri, Th. Zur Frage der Entstehung maligner Tumoren, 1914 (English Translation: The Origin of Malignant Tumors, Williams and Wilkins, Baltimore, Maryland, 1929).A summary of the pioneering experiments that provide the foundations for our current thinking about the role of the centrosome in tumorigenesis. A lucid and prophetic treatise.

    Google Scholar 

  11. Lingle, W. L., Lutz, W. H., Ingle, J. N., Maihle, N. J. & Salisbury, J. L. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc. Natl Acad. Sci. USA 95, 2950–2955 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pihan, G. A. et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 58, 3974–3985 (1998).

    CAS  PubMed  Google Scholar 

  13. Weber, R. G. et al. Centrosome amplification as a possible mechanism for numerical chromosome aberrations in cerebral primitive neuroectodermal tumors with TP53 mutations. Cytogenet. Cell Genet. 83, 266–269 (1998).

    CAS  PubMed  Google Scholar 

  14. Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578–583 (1995).

    CAS  PubMed  Google Scholar 

  15. Simerly, C. et al. The paternal inheritance of the centrosome, the cell's microtubule-organizing center, in humans, and the implications for infertility. Nature Med. 1, 47–52 (1995).

    PubMed  Google Scholar 

  16. Freed, E. et al. Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev. 13, 2242–2257 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wojcik, E. J., Glover, D. M. & Hays, T. S. The SCF ubiquitin ligase protein slimb regulates centrosome duplication in Drosophila. Curr. Biol. 10, 1131–1134 (2000).

    CAS  PubMed  Google Scholar 

  18. Sluder, G. & Hinchcliffe, E. H. The coordination of centrosome reproduction with nuclear events during the cell cycle. Curr. Top. Dev. Biol. 49, 267–289 (2000).

    CAS  PubMed  Google Scholar 

  19. Meraldi, P., Lukas, J., Fry, A. M., Bartek, J. & Nigg, E. A. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nature Cell Biol. 1, 88–93 (1999).

    CAS  PubMed  Google Scholar 

  20. Hinchcliffe, E. H., Li, C., Thompson, E. A., Maller, J. L. & Sluder, G. Requirement of Cdk2–cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283, 851–854 (1999).

    CAS  PubMed  Google Scholar 

  21. Lacey, K. R., Jackson, P. K. & Stearns, T. Cyclin-dependent kinase control of centrosome duplication. Proc. Natl Acad. Sci. USA 96, 2817–2822 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsumoto, Y., Hayashi, K. & Nishida, E. Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9, 429–432 (1999).

    CAS  PubMed  Google Scholar 

  23. Pihan, G. A. et al. Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res. 61, 2212–2219 (2001).A very careful study on the relationship between centrosome anomalies and prostate tumours at various stages of progression.

    CAS  PubMed  Google Scholar 

  24. Lingle, W. L. & Salisbury, J. L. Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am. J. Pathol. 155, 1941–1951 (1999).Detailed ultrastructural analysis of centrosomes in human breast tumours, revealing a strong association between the excess of pericentriolar material and abnormal mitoses.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sato, N. et al. Centrosome abnormalities in pancreatic ductal carcinoma. Clin. Cancer Res. 5, 963–970 (1999).

    CAS  PubMed  Google Scholar 

  26. Sato, N. et al. Correlation between centrosome abnormalities and chromosomal instability in human pancreatic cancer cells. Cancer Genet. Cytogenet. 126, 13–19 (2001).

    CAS  PubMed  Google Scholar 

  27. Kuo, K. K. et al. Centrosome abnormalities in human carcinomas of the gallbladder and intrahepatic and extrahepatic bile ducts. Hepatology 31, 59–64 (2000).

    CAS  PubMed  Google Scholar 

  28. Gustafson, L. M. et al. Centrosome hyperamplification in head and neck squamous cell carcinoma: a potential phenotypic marker of tumor aggressiveness. Laryngoscope 110, 1798–1801 (2000).

    CAS  PubMed  Google Scholar 

  29. Carroll, P. E. et al. Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene 18, 1935–1944 (1999).

    CAS  PubMed  Google Scholar 

  30. Duensing, S. & Munger, K. Centrosome abnormalities, genomic instability and carcinogenic progression. Biochim. Biophys. Acta 1471, M81–M88 (2001).

    CAS  PubMed  Google Scholar 

  31. Duensing, S. & Muenger, K. Human papillomaviruses and centrosome dupliation errors: modeling the origins of genomic instability. Oncogene 21, 6241–6248 (2002).

    CAS  PubMed  Google Scholar 

  32. Skyldberg, B. et al. Human papillomavirus infection, centrosome aberration, and genetic stability in cervical lesions. Mod. Pathol. 14, 279–284 (2001).

    CAS  PubMed  Google Scholar 

  33. Ghadimi, B. M. et al. Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes Chromosom. Cancer 27, 183–190 (2000).

    CAS  PubMed  Google Scholar 

  34. Lingle, W. L. et al. Centrosome amplification drives chromosomal instability in breast tumor development. Proc. Natl Acad. Sci. USA 99, 1978–1983 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pihan, G. A., Wallace, J., Zhou, Y. & Doxsey, S. Centrosome abnormalities and chromosome instability occur together in precancerous lesions. Proc. Natl Acad. Sci. USA (in the press).

  36. Gergely, F. et al. The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc. Natl Acad. Sci. USA 97, 14352–14357 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mayor, T., Hacker, U., Stierhof, Y. D. & Nigg, E. A. The mechanism regulating the dissociation of the centrosomal protein C-Nap1 from mitotic spindle poles. J. Cell Sci. 115, 3275–3248 (2002).

    CAS  PubMed  Google Scholar 

  38. Ohta, T. et al. Characterization of Cep135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells. J. Cell Biol. 156, 87–100 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Purohit, A., Tynan, S. H., Vallee, R. & Doxsey, S. J. Direct interaction of pericentrin with cytoplasmic dynein light intermediate chain contributes to mitotic spindle organization. J. Cell Biol. 147, 481–492 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mitelman, F. Recurrent chromosome aberrations in cancer. Mutat. Res. 462, 247–253 (2000).

    CAS  PubMed  Google Scholar 

  41. Ried, T., Heselmeyer-Haddad, K., Blegen, H., Schrock, E. & Auer, G. Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors: a phenotype/genotype correlation. Genes Chromosom. Cancer 25, 195–204 (1999).

    CAS  PubMed  Google Scholar 

  42. Duensing, S. et al. Centrosome abnormalities and genomic instability by episomal expression of human papillomavirus type 16 in raft cultures of human keratinocytes. J. Virol. 75, 7712–7716 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Duensing, S., Duensing, A., Crum, C. P. & Munger, K. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 61, 2356–2360 (2001).

    CAS  PubMed  Google Scholar 

  44. Goepfert, T. M. et al. Centrosome amplification and overexpression of Aurora-A are early events in rat mammary carcinogenesis. Cancer Res. 62, 4115–4122 (2002).

    CAS  PubMed  Google Scholar 

  45. Shono, M. et al. Stepwise progression of centrosome defects associated with local tumor growth and metastatic process of human pancreatic carcinoma cells transplanted orthotopically into nude mice. Lab. Invest. 81, 945–952 (2001).

    CAS  PubMed  Google Scholar 

  46. Brinkley, B. R. Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol. 11, 18–21 (2001).

    CAS  PubMed  Google Scholar 

  47. Balczon, R. et al. Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J. Cell Biol. 130, 105–115 (1995).

    CAS  PubMed  Google Scholar 

  48. Meraldi, P., Honda, R. & Nigg, E. A. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J. 21, 483–492 (2002).Overexpression of Aurora-A and other mitotic kinases is shown to cause centrosome amplification, not by deregulating centrosome duplication as previously thought but, instead, through defects in cytokinesis that result in transiently tetraploid cells. This phenotype is enhanced in p53−/− cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Balczon, R. C. Overexpression of cyclin A in human HeLa cells induces detachment of kinetochores and spindle pole/centrosome overproduction. Chromosoma 110, 381–392 (2001).

    CAS  PubMed  Google Scholar 

  50. Millband, D. N., Campbell, L. & Hardwick, K. G. The awesome power of multiple model systems: interpreting the complex nature of spindle checkpoint signaling. Trends Cell Biol. 12, 205–209 (2002).

    CAS  PubMed  Google Scholar 

  51. Shekhar, M. P., Lyakhovich, A., Visscher, D. W., Heng, H. & Kondrat, N. Rad6 overexpression induces multinucleation, centrosome amplification, abnormal mitosis, aneuploidy, and transformation. Cancer Res. 62, 2115–2124 (2002).

    CAS  PubMed  Google Scholar 

  52. Galipeau, P. C. et al. 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett's esophagus. Proc. Natl Acad. Sci. USA 93, 7081–7084 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shackney, S. E. et al. Model for the genetic evolution of human solid tumors. Cancer Res. 49, 3344–3354 (1989).

    CAS  PubMed  Google Scholar 

  54. Southern, S. A., Evans, M. F. & Herrington, C. S. Basal cell tetrasomy in low-grade cervical squamous intraepithelial lesions infected with high-risk human papillomaviruses. Cancer Res. 57, 4210–4213 (1997).

    CAS  PubMed  Google Scholar 

  55. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G. F. Abnormal centrosome amplification in the absence of p53. Science 271, 1744–1747 (1996).An influential study that contributed greatly to the revival of interest in the possible contribution of centrosome aberrations to carcinogenesis.

    CAS  PubMed  Google Scholar 

  56. Levine, D. S., Sanchez, C. A., Rabinovitch, P. S. & Reid, B. J. Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer. Proc. Natl Acad. Sci. USA 88, 6427–6431 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tarapore, P., Horn, H. F., Tokuyama, Y. & Fukasawa, K. Direct regulation of the centrosome duplication cycle by the p53-p21Waf1/Cip1 pathway. Oncogene 20, 3173–3184 (2001).

    CAS  PubMed  Google Scholar 

  58. Andreassen, P. R., Lohez, O. D., Lacroix, F. B. & Margolis, R. L. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol. Biol. Cell 12, 1315–1328 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Borel, F., Lohez, O. D., Lacroix, F. B. & Margolis, R. L. Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centrosome clusters in p53 and RB pocket protein-compromised cells. Proc. Natl Acad. Sci. USA. 99, 9819–9824 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Casenghi, M. et al. p53-independent apoptosis and p53-dependent block of DNA rereplication following mitotic spindle inhibition in human cells. Exp. Cell Res. 250, 339–350 (1999).

    CAS  PubMed  Google Scholar 

  61. Khan, S. H. & Wahl, G. M. p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest. Cancer Res. 58, 396–401 (1998).

    CAS  PubMed  Google Scholar 

  62. Lanni, J. S. & Jacks, T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol. Cell. Biol. 18, 1055–1064 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Minn, A. J., Boise, L. H. & Thompson, C. B. Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev. 10, 2621–2631 (1996).

    CAS  PubMed  Google Scholar 

  64. Goepfert, T. M. et al. Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells. FASEB J. 14, 2221–2229 (2000).

    CAS  PubMed  Google Scholar 

  65. Bunz, F. et al. Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res. 62, 1129–1133 (2002).

    CAS  PubMed  Google Scholar 

  66. Duensing, S. et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc. Natl Acad. Sci. USA 97, 10002–10007 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Duensing, S., Duensing, A., Crum, C. P. & Munger, K. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 61, 2356–2360 (2001).An interesting studying indicating that the two oncoproteins that are encoded by HPV-16 induce numerical centrosome aberrations by distinct mechanisms.

    CAS  PubMed  Google Scholar 

  68. Haruki, N. et al. Persistent increase in chromosome instability in lung cancer: possible indirect involvement of p53 inactivation. Am. J. Pathol. 159, 1345–1352 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lingle, W. L. & Salisbury, J. L. The role of the centrosome in the development of malignant tumors. Curr. Top. Dev. Biol. 49, 313–329 (2000).

    CAS  PubMed  Google Scholar 

  70. Pihan, G. A. & Doxsey, S. J. The mitotic machinery as a source of genetic instability in cancer. Semin. Cancer Biol. 9, 289–302 (1999).

    CAS  PubMed  Google Scholar 

  71. Griffin, C. S., Simpson, P. J., Wilson, C. R. & Thacker, J. Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nature Cell Biol. 2, 757–761 (2000).

    CAS  PubMed  Google Scholar 

  72. Knoblich, J. A. Asymmetric cell division during animal development. Nature Rev. Mol. Cell Biol. 2, 11–20 (2001).

    CAS  Google Scholar 

  73. Meads, T. & Schroer, T. A. Polarity and nucleation of microtubules in polarized epithelial cells. Cell Motil. Cytoskeleton 32, 273–288 (1995).

    CAS  PubMed  Google Scholar 

  74. Reinsch, S. & Karsenti, E. Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J. Cell Biol. 126, 1509–1526 (1994).

    CAS  PubMed  Google Scholar 

  75. Karsenti, E. & Vernos, I. The mitotic spindle: a self-made machine. Science 294, 543–547 (2001).

    CAS  PubMed  Google Scholar 

  76. Khodjakov, A. & Rieder, C. L. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J. Cell Biol. 153, 237–242 (2001).This fascinating study examines — using laser microsurgery — the role of centrosomes during vertebrate cell-cycle progression. Following ablation of centrosomes, cells can still form bipolar mitotic spindles, but they frequently fail cytokinesis and they cannot reinitiate DNA synthesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Brinkley, B. R. et al. Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian cells. J. Cell Biol. 90, 554–562 (1981).

    CAS  PubMed  Google Scholar 

  78. Ring, D., Hubble, R. & Kirschner, M. Mitosis in a cell with multiple centrioles. J. Cell Biol. 94, 549–556 (1982).

    CAS  PubMed  Google Scholar 

  79. Sharp, G. A., Weber, K. & Osborn, M. Centriole number and process formation in established neuroblastoma cells and primary dorsal root ganglion neurones. Eur. J. Cell Biol. 29, 97–103 (1982).

    CAS  PubMed  Google Scholar 

  80. Jallepalli, P. V & Lengauer, C. Chromosome segregation and cancer: cutting through the mystery. Nature Rev. Cancer 1, 109–117 (2001).

    CAS  Google Scholar 

  81. Sato, N. et al. A possible role for centrosome overduplication in radiation-induced cell death. Oncogene 19, 5281–5290 (2000).

    CAS  PubMed  Google Scholar 

  82. Mantel, C. et al. p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood 93, 1390–1398 (1999).

    CAS  PubMed  Google Scholar 

  83. Hollander, M. C. et al. Genomic instability in Gadd45a-deficient mice. Nature Genet. 23, 176–184 (1999).

    CAS  PubMed  Google Scholar 

  84. Smith, L. et al. Duplication of ATR inhibits MyoD, induces aneuploidy and eliminates radiation-induced G1 arrest. Nature Genet. 19, 39–46 (1998).

    CAS  PubMed  Google Scholar 

  85. Xu, X. et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395 (1999).

    CAS  PubMed  Google Scholar 

  86. Tutt, A. et al. Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr. Biol. 9, 1107–1110 (1999).

    CAS  PubMed  Google Scholar 

  87. Xie, W., Li, L. & Cohen, S. N. Cell cycle-dependent subcellular localization of the TSG101 protein and mitotic and nuclear abnormalities associated with TSG101 deficiency. Proc. Natl Acad. Sci. USA 95, 1595–1600 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 19, 2069–2081 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet. 20, 189–193 (1998).

    CAS  PubMed  Google Scholar 

  90. Li, F. et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nature Cell Biol. 1, 461–466 (1999).

    CAS  PubMed  Google Scholar 

  91. Gray, J. W. & Collins, C. Genome changes and gene expression in human solid tumors. Carcinogenesis 21, 443–452 (2000).

    CAS  PubMed  Google Scholar 

  92. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    CAS  PubMed  Google Scholar 

  93. Loeb, L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51, 3075–3079 (1991).

    CAS  PubMed  Google Scholar 

  94. Duesberg, P. & Rasnick, D. Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil. Cytoskeleton 47, 81–107 (2000).

    CAS  PubMed  Google Scholar 

  95. Tomlinson, I., Sasieni, P. & Bodmer, W. How many mutations in a cancer? Am. J. Pathol. 160, 755–758 (2002).

    PubMed  PubMed Central  Google Scholar 

  96. Mitelman, F., Johansson, B. & Mertens, F. Catalog of Chromosome Aberrations in Cancer Vol. 2 (Wiley–Liss, New York, 1994).

    Google Scholar 

  97. Hartwell, L. H. & Kastan, M. B. Cell cycle control and cancer. Science 266, 1821–1828 (1994).

    CAS  PubMed  Google Scholar 

  98. Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell Biol. 2, 21–32 (2001).

    CAS  Google Scholar 

  99. Bornens, M., Paintrand, M., Berges, J., Marty, M. C. & Karsenti, E. Structural and chemical characterization of isolated centrosomes. Cell Motil. Cytoskeleton 8, 238–249 (1987).

    CAS  PubMed  Google Scholar 

  100. Paintrand, M., Moudjou, M., Delacroix, H. & Bornens, M. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108, 107–128 (1992).

    CAS  PubMed  Google Scholar 

  101. Beisson, J. & Jerka-Dziadosz, M. Polarities of the centriolar structure: morphogenetic consequences. Biol. Cell 91, 367–378 (1999).

    CAS  PubMed  Google Scholar 

  102. Fuchs, E. & Cleveland, D. W. A structural scaffolding of intermediate filaments in health and disease. Science 279, 514–519 (1998).

    CAS  PubMed  Google Scholar 

  103. Schliwa, M., Euteneuer, U., Graf, R. & Ueda, M. Centrosomes, microtubules and cell migration. Biochem. Soc. Symp. 65, 223–231 (1999).

    CAS  PubMed  Google Scholar 

  104. Piel, M., Nordberg, J., Euteneuer, U. & Bornens, M. Centrosome-dependent exit of cytokinesis in animal cells. Science 291, 1550–1553 (2001).The careful examination of the behaviour of centrosomes in living mitotic cells revealed a remarkable repositioning of the older centriole to the midbody, indicating a crucial role for a centrosome-dependent pathway at the final stage of cell division.

    CAS  PubMed  Google Scholar 

  105. Mayor, T., Stierhof, Y. D., Tanaka, K., Fry, A. M. & Nigg, E. A. The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J. Cell Biol. 151, 837–846 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kochanski, R. S. & Borisy, G. G. Mode of centriole duplication and distribution. J. Cell Biol. 110, 1599–1605 (1990).A very elegant study, demonstrating that tubulin incorporation into centrioles during each cell cycle is conservative, whereas the distribution of centrioles is semi-conservative.

    CAS  PubMed  Google Scholar 

  107. Hinchcliffe, E. H. & Sluder, G. Centrosome reproduction in Xenopus lysates. Methods Cell Biol. 67, 269–287 (2001).

    CAS  PubMed  Google Scholar 

  108. Piel, M. & Bornens, M. Centrosome reproduction in vitro: mammalian centrosomes in Xenopus lysates. Methods Cell Biol. 67, 289–304 (2001).

    CAS  PubMed  Google Scholar 

  109. Khodjakov, A. et al. De novo formation of centrosomes in vertebrate cells arrested during S phase. J. Cell Biol. 158, 1171–1181 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank F. Barr, T. Mayer, P. Meraldi, H. Silljé and C. Wilkinson for helpful comments on the manuscript and M. Bornens (Paris), M. Casenghi (Martinsried), S. Doxsey (Worcester) and W. Lingle (Rochester) for generously contributing material for the figures. My sincere apologies go to all authors whose primary work could not be cited due to space constraints.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

bile duct cancer

brain cancer

breast cancer

cervical cancer

colon cancer

head and neck cancer

lung cancer

pancreatic cancer

prostate cancer

GenBank

E6

E7

HPV-16

LocusLink

AKAP450

Aurora-A

CDK2

C-NAP1

GADD45

kendrin

MDM2

ninein

p53

pericentrin

RAD6

RB

WAF1

FURTHER INFORMATION

Erich A. Nigg's web site

Mitelman Database of Chromosome Aberrations in Cancer

Mitosis World

Glossary

CYTOKINESIS

The process of cytoplasmic division.

SPINDLE

A dynamic bipolar array of microtubules that is assembled during mitosis and meiosis to segregate chromosomes.

ASTERS

Radial microtubule arrays with minus ends that are usually tethered to centrosomes (or assemblies of centrosomal proteins) and plus ends that extend towards the periphery.

CLEAVAGE PLANE

The plane of cell division — defined by the assembly of a contractile actomyosin ring at the cell cortex.

γ-TUBULIN RING COMPLEX

A γ-tubulin-containing multiprotein complex that acts as a ring-shaped template for microtubule nucleation in metazoan organisms.

ACENTRIOLAR BODIES

Assemblies of centrosomal proteins that can form in the absence of centrioles.

ORGANOTYPIC CULTURE

The in vitro maintenance and growth of tissue explants and multicellular cultures that mimic cell interactions within tissues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nigg, E. Centrosome aberrations: cause or consequence of cancer progression?. Nat Rev Cancer 2, 815–825 (2002). https://doi.org/10.1038/nrc924

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc924

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing