Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetics and cardiovascular disease

Abstract

Despite advances in the prevention and management of cardiovascular disease (CVD), this group of multifactorial disorders remains a leading cause of mortality worldwide. CVD is associated with multiple genetic and modifiable risk factors; however, known environmental and genetic influences can only explain a small part of the variability in CVD risk, which is a major obstacle for its prevention and treatment. A more thorough understanding of the factors that contribute to CVD is, therefore, needed to develop more efficacious and cost-effective therapy. Application of the 'omics' technologies will hopefully make these advances a reality. Epigenomics has emerged as one of the most promising areas that will address some of the gaps in our current knowledge of the interaction between nature and nurture in the development of CVD. Epigenetic mechanisms include DNA methylation, histone modification, and microRNA alterations, which collectively enable the cell to respond quickly to environmental changes. A number of CVD risk factors, such as nutrition, smoking, pollution, stress, and the circadian rhythm, have been associated with modification of epigenetic marks. Further examination of these mechanisms may lead to earlier prevention and novel therapy for CVD.

Key Points

  • Risk of cardiovascular disease (CVD) is determined by the complex interaction of multiple genetic and environmental factors; however, most of the genetic contribution to CVD risk remains unaccounted for

  • The prenatal and postnatal environment can induce changes in gene expression that are independent of the DNA sequence and arise as a result of epigenetic mechanisms

  • Epigenetic modifications that may have a role in increasing CVD risk include DNA methylation, histone acetylation and deacetylation, and alterations in levels of microRNAs

  • Many of the genes associated with CVD risk factors or CVD itself are known to be regulated by epigenetic mechanisms

  • The effect of environmental factors, such as diet, smoking, pollution, and stress on CVD risk may be mediated by epigenetic changes

  • Further knowledge of epigenetics might contribute to the development of novel tools for CVD prevention and therapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epigenetics and atherosclerosis.
Figure 2: Epigenetic modifications that regulate transcription or translation.

Similar content being viewed by others

References

  1. Mathers, C. D. & Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3, e442 (2006).

    PubMed  PubMed Central  Google Scholar 

  2. MacKinnon, A. U. The origin of the modern epidemic of coronary artery disease in England. J. R. Coll. Gen. Pract. 37, 174–176 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Azambuja, M. I. & Levins, R. Coronary heart disease (CHD)-—one or several diseases? Changes in the prevalence and features of CHD. Perspect. Biol. Med. 50, 228–242 (2007).

    PubMed  Google Scholar 

  4. Dawber, T. R., Meadors, G. F. & Moore, F. E. Jr. Epidemiological approaches to heart disease: the Framingham Study. Am. J. Public Health Nations Health 41, 279–281 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gersh, B. J., Sliwa, K., Mayosi, B. M. & Yusuf, S. Novel therapeutic concepts: the epidemic of cardiovascular disease in the developing world: global implications. Eur. Heart J. 31, 642–648 (2010).

    PubMed  Google Scholar 

  6. Grundy, S. M. et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110, 227–239 (2004).

    PubMed  Google Scholar 

  7. Sabatti, C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41, 35–46 (2009).

    CAS  PubMed  Google Scholar 

  8. Sipido, K. R. et al. Identifying needs and opportunities for advancing translational research in cardiovascular disease. Cardiovasc. Res. 83, 425–435 (2009).

    CAS  PubMed  Google Scholar 

  9. Omics.org Alphabetically ordered list of omes and omics [online], (2009).

  10. Turan, N., Katari, S., Coutifaris, C. & Sapienza, C. Explaining inter-individual variability in phenotype: is epigenetics up to the challenge? Epigenetics 5, 16–19 (2010).

    CAS  PubMed  Google Scholar 

  11. Wierda, R. J., Geutskens, S. B., Jukema, J. W., Quax, P. H. & van den Elsen, P. J. Epigenetics in atherosclerosis and inflammation. J. Cell. Mol. Med. doi:10.1111/j.1582-4934201001022.x.

  12. Turunen, M. P., Aavik, E. & Ylä-Herttuala, S. Epigenetics and atherosclerosis. Biochim. Biophys. Acta 1790, 886–891 (2009).

    CAS  PubMed  Google Scholar 

  13. Gluckman, P. D., Hanson, M. A., Buklijas, T., Low, F. M. & Beedle, A. S. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat. Rev. Endocrinol. 5, 401–408 (2009).

    CAS  PubMed  Google Scholar 

  14. Krause, B., Sobrevia, L. & Casanello, P. Epigenetics: new concepts of old phenomena in vascular physiology. Curr. Vasc. Pharmacol. 7, 513–520 (2009).

    CAS  PubMed  Google Scholar 

  15. Ling, C. & Groop, L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58, 2718–2725 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mack, C. P. An epigenetic clue to diabetic vascular disease. Circ. Res. 103, 568–570 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stöger, R. Epigenetics and obesity. Pharmacogenomics 9, 1851–1860 (2008).

    PubMed  Google Scholar 

  18. Gluckman, P. D. & Hanson, M. A. Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int. J. Obes. 32 (Suppl. 7), S62–S71 (2008).

    CAS  Google Scholar 

  19. Campión, J., Milagro, F. I. & Martínez, J. A. Individuality and epigenetics in obesity. Obes. Rev. 10, 383–392 (2009).

    PubMed  Google Scholar 

  20. Dong, C., Yoon, W. & Goldschmidt-Clermont, P. J. DNA methylation and atherosclerosis. J. Nutr. 132, 2406S–2409S (2002).

    CAS  PubMed  Google Scholar 

  21. Sharma, P. et al. Mining literature for a comprehensive pathway analysis: a case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Health Dis. 5, 1 (2006).

    PubMed  PubMed Central  Google Scholar 

  22. Stenvinkel, P. et al. Impact of inflammation on epigenetic DNA methylation—a novel risk factor for cardiovascular disease? J. Intern. Med. 261, 488–499 (2007).

    CAS  PubMed  Google Scholar 

  23. Lund, G. & Zaina, S. Atherosclerosis risk factors can impose aberrant DNA methylation patterns: a tale of traffic and homocysteine. Curr. Opin. Lipidol. 20, 448–449 (2009).

    CAS  PubMed  Google Scholar 

  24. Yideng, J. et al. Homocysteine-mediated expression of SAHH, DNMTs, MBD2, and DNA hypomethylation potential pathogenic mechanism in VSMCs. DNA Cell Biol. 26, 603–611 (2007).

    PubMed  Google Scholar 

  25. Sharma, P. et al. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol. 27, 357–365 (2008).

    CAS  PubMed  Google Scholar 

  26. Lee, M. E. & Wang, H. Homocysteine and hypomethylation. A novel link to vascular disease. Trends Cardiovasc. Med. 9, 49–54 (1999).

    CAS  PubMed  Google Scholar 

  27. Castro, R., Rivera, I., Blom, H. J., Jakobs, C. & Tavares de Almeida, I. Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: an overview. J. Inherit. Metab. Dis. 29, 3–20 (2006).

    CAS  PubMed  Google Scholar 

  28. Libby, P., Okamoto, Y., Rocha, V. Z. & Folco, E. Inflammation in atherosclerosis: transition from theory to practice. Circ. J. 74, 213–220 (2010).

    CAS  PubMed  Google Scholar 

  29. Pons, D. et al. Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease. Eur. Heart J. 30, 266–277 (2009).

    CAS  PubMed  Google Scholar 

  30. Goyal, B. R., Patel, M. M., Soni, M. K. & Bhadada, S. V. Therapeutic opportunities of small interfering RNA. Fundam. Clin. Pharmacol. 23, 367–386 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Silvestri, P. et al. MicroRNAs and ischemic heart disease: towards a better comprehension of pathogenesis, new diagnostic tools and new therapeutic targets. Recent Pat. Cardiovasc. Drug Discov. 4, 109–118 (2009).

    CAS  PubMed  Google Scholar 

  32. Mishra, P. J. & Bertino, J. R. MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 10, 399–416 (2009).

    CAS  PubMed  Google Scholar 

  33. Buysschaert, I., Schmidt, T., Roncal, C., Carmeliet, P. & Lambrechts, D. Genetics, epigenetics and pharmaco-(epi)genomics in angiogenesis. J. Cell. Mol. Med. 12, 2533–2551 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Esteller, M. Epigenetics in evolution and disease. Lancet 372, S90–S96 (2008).

    Google Scholar 

  35. Waddington, C. H. Organisers and Genes (Cambridge University Press, Cambridge, 1940).

    Google Scholar 

  36. Waddington, C. H. Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942).

    Google Scholar 

  37. Holliday, R. & Pugh, J. E. DNA modification mechanisms and gene activity during development. Science 187, 226–232 (1975).

    CAS  PubMed  Google Scholar 

  38. Chen, Z. X. & Riggs, A. D. Maintenance and regulation of DNA methylation patterns in mammals. Biochem. Cell Biol. 83, 438–448 (2005).

    CAS  PubMed  Google Scholar 

  39. Turner, B. M. Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cell. Mol. Life Sci. 54, 21–31 (1998).

    CAS  PubMed  Google Scholar 

  40. Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).

    CAS  PubMed  Google Scholar 

  42. Barringhaus, K. G. & Zamore, P. D. MicroRNAs: regulating a change of heart. Circulation 119, 2217–2224 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Katey, J. et al. miR-33 coordinates genes regulating cholesterol homeostasis. Science (in press).

  44. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Skinner, M. K., Manikkam, M. & Guerrero-Bosagna, C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol. Metab. 21, 214–222 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Meehan, R. R. DNA methylation in animal development. Semin. Cell Dev. Biol. 14, 53–65 (2003).

    CAS  PubMed  Google Scholar 

  47. Mehler, M. F. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog. Neurobiol. 86, 305–341 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Subramanian, S. & Steer, C. J. MicroRNAs as gatekeepers of apoptosis. J. Cell. Physiol. 223, 289–298 (2010).

    CAS  PubMed  Google Scholar 

  49. Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–192 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Krebs, J. R. The gourmet ape: evolution and human food preferences. Am. J. Clin. Nutr. 90, 707S–711S (2009).

    CAS  PubMed  Google Scholar 

  51. Kelley, J. L. & Swanson, W. J. Positive selection in the human genome: from genome scans to biological significance. Annu. Rev. Genomics Hum. Genet. 9, 143–160 (2008).

    CAS  PubMed  Google Scholar 

  52. Neel, J. V. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. 14, 353–362 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Stöger, R. The thrifty epigenotype: an acquired and heritable predisposition for obesity and diabetes? Bioessays 30, 156–166 (2008).

    PubMed  Google Scholar 

  54. Roseboom, T., de Rooij, S. & Painter, R. The Dutch famine and its long-term consequences for adult health. Early Hum. Dev. 82, 485–491 (2006).

    PubMed  Google Scholar 

  55. Lumey, L. H. et al. Cohort profile: the Dutch Hunger Winter families study. Int. J. Epidemiol. 36, 1196–1204 (2007).

    CAS  PubMed  Google Scholar 

  56. Kyle, U. G. & Pichard, C. The Dutch Famine of 1944–1945: a pathophysiological model of long-term consequences of wasting disease. Curr. Opin. Clin. Nutr. Metab. Care 9, 388–394 (2006).

    PubMed  Google Scholar 

  57. Stein, A. D. et al. Anthropometric measures in middle age after exposure to famine during gestation: evidence from the Dutch famine. Am. J. Clin. Nutr. 85, 869–876 (2007).

    CAS  PubMed  Google Scholar 

  58. de Rooij, S. R., Painter, R. C., Holleman, F., Bossuyt, P. M. & Roseboom, T. J. The metabolic syndrome in adults prenatally exposed to the Dutch famine. Am. J. Clin. Nutr. 86, 1219–1224 (2007).

    CAS  PubMed  Google Scholar 

  59. Dover, G. J. The Barker hypothesis: how pediatricans will diagnose and prevent common adult-onset diseases. Trans. Am. Clin. Climatol. Assoc. 120, 199–207 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. Wadhwa, P. D., Buss, C., Entringer, S. & Swanson, J. M. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin. Reprod. Med. 27, 358–368 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gluckman, P. D., Hanson, M. A., Cooper, C. & Thornburg, K. L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359, 61–73 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Waterland, R. A. & Michels, K. B. Epigenetic epidemiology of the developmental origins hypothesis. Annu. Rev. Nutr. 27, 363–388 (2007).

    CAS  PubMed  Google Scholar 

  63. Waterland, R. A. & Jirtle, R. L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23, 5293–5300 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bogdarina, I., Welham, S., King, P. J., Burns, S. P. & Clark, A. J. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ. Res. 100, 520–526 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Heijmans, B. T. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17046–17049 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tobi, E. W. et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 18, 4046–4053 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. El-Maarri, O. et al. Gender specific differences in levels of DNA methylation at selected loci from human total blood: a tendency toward higher methylation levels in males. Hum. Genet. 122, 505–514 (2007).

    CAS  PubMed  Google Scholar 

  68. Alkemade, F. E. et al. Prenatal exposure to apoE deficiency and postnatal hypercholesterolemia are associated with altered cell-specific lysine methyltransferase and histone methylation patterns in the vasculature. Am. J. Pathol. 176, 542–548 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. van Straten, E. M. et al. The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R275–R282 (2010).

    CAS  PubMed  Google Scholar 

  70. [No authors listed] Active and passive tobacco exposure: a serious pediatric health problem. A statement from the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 90, 2581–2590 (1994).

  71. Breton, C. V. et al. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am. J. Respir. Crit. Care Med. 180, 462–467 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Xue, F. & Michels, K. B. Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence. Lancet Oncol. 8, 1088–1100 (2007).

    PubMed  Google Scholar 

  73. Fraga, M. F. & Esteller, M. Epigenetics and aging: the targets and the marks. Trends Genet. 23, 413–418 (2007).

    CAS  PubMed  Google Scholar 

  74. Baccarelli, A. et al. Rapid DNA methylation changes after exposure to traffic particles. Am. J. Respir. Crit. Care Med. 179, 572–578 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoffmann, B. et al. Residential traffic exposure and coronary heart disease: results from the Heinz Nixdorf Recall Study. Biomarkers 14 (Suppl. 1), 74–78 (2009).

    CAS  PubMed  Google Scholar 

  76. Launay, J. M. et al. Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLoS ONE 4, e7959 (2009).

    PubMed  PubMed Central  Google Scholar 

  77. Lai, C. Q. et al. Population admixture associated with disease prevalence in the Boston Puerto Rican health study. Hum. Genet. 125, 199–209 (2009).

    CAS  PubMed  Google Scholar 

  78. Dodge, K. A. Practice and public policy in the era of gene-environment interactions. Novartis Found. Symp. 293, 87–97 (2008).

    CAS  PubMed  Google Scholar 

  79. Kuzawa, C. W. & Sweet, E. Epigenetics and the embodiment of race: developmental origins of US racial disparities in cardiovascular health. Am. J. Hum. Biol. 21, 2–15 (2009).

    PubMed  Google Scholar 

  80. Mosca, L. et al. Cardiovascular disease in women: a statement for healthcare professionals from the American Heart Association. Writing Group. Circulation 96, 2468–2482 (1997).

    CAS  PubMed  Google Scholar 

  81. Abbott, R. D. et al. Joint distribution of lipoprotein cholesterol classes. The Framingham study. Arteriosclerosis 3, 260–272 (1983).

    CAS  PubMed  Google Scholar 

  82. Gabory, A., Attig, L. & Junien, C. Sexual dimorphism in environmental epigenetic programming. Mol. Cell. Endocrinol. 304, 8–18 (2009).

    CAS  PubMed  Google Scholar 

  83. Martino, T. A. & Sole, M. J. Molecular time: an often overlooked dimension to cardiovascular disease. Circ. Res. 105, 1047–1061 (2009).

    CAS  PubMed  Google Scholar 

  84. Hermida, R. C., Ayala, D. E., Fernández, J. R. & Calvo, C. Chronotherapy improves blood pressure control and reverts the nondipper pattern in patients with resistant hypertension. Hypertension 51, 69–76 (2008).

    CAS  PubMed  Google Scholar 

  85. Portaluppi, F. & Lemmer, B. Chronobiology and chronotherapy of ischemic heart disease. Adv. Drug Deliv. Rev. 59, 952–965 (2007).

    CAS  PubMed  Google Scholar 

  86. Nakahata, Y., Grimaldi, B., Sahar, S., Hirayama, J. & Sassone-Corsi, P. Signaling to the circadian clock: plasticity by chromatin remodeling. Curr. Opin. Cell Biol. 19, 230–237 (2007).

    CAS  PubMed  Google Scholar 

  87. Grimaldi, B., Nakahata, Y., Kaluzova, M., Masubuchi, S. & Sassone-Corsi, P. Chromatin remodeling, metabolism and circadian clocks: the interplay of CLOCK and SIRT1. Int. J. Biochem. Cell Biol. 41, 81–86 (2009).

    CAS  PubMed  Google Scholar 

  88. Pegoraro, M. & Tauber, E. The role of microRNAs (miRNA) in circadian rhythmicity. J. Genet. 87, 505–511 (2008).

    CAS  PubMed  Google Scholar 

  89. Rudic, R. D. & Fulton, D. J. Pressed for time: the circadian clock and hypertension. J. Appl. Physiol. 107, 1328–1338 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hoffman, A. E. et al. CLOCK in breast tumorigenesis: genetic, epigenetic, and transcriptional profiling analyses. Cancer Res. 70, 1459–1468 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, J., Burridge, K. A. & Friedman, M. H. In vivo differences between endothelial transcriptional profiles of coronary and iliac arteries revealed by microarray analysis. Am. J. Physiol. Heart Circ. Physiol. 295, H1556–H1561 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Piekarz, R. L. et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol. 27, 5410–5417 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lin, Y. C. et al. Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC1/2. Cancer Res. 68, 2375–2383 (2008).

    CAS  PubMed  Google Scholar 

  94. Mitro, N. et al. Insights in the regulation of cholesterol 7alpha-hydroxylase gene reveal a target for modulating bile acid synthesis. Hepatology 46, 885–897 (2007).

    CAS  PubMed  Google Scholar 

  95. Dje N'Guessan, P. et al. Statins control oxidized LDL-mediated histone modifications and gene expression in cultured human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 29, 380–386 (2009).

    PubMed  Google Scholar 

  96. Fang, M., Chen, D. & Yang, C. S. Dietary polyphenols may affect DNA methylation. J. Nutr. 137, 223S–228S (2007).

    CAS  PubMed  Google Scholar 

  97. Gusterson, R. J., Jazrawi, E., Adcock, I. M. & Latchman, D. S. The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J. Biol. Chem. 278, 6838–6847 (2003).

    CAS  PubMed  Google Scholar 

  98. Balasubramanyam, K. et al. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 279, 51163–51171 (2004).

    CAS  PubMed  Google Scholar 

  99. Morimoto, T. et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J. Clin. Invest. 118, 868–878 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dhillon, N. et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res. 14, 4491–4499 (2008).

    CAS  PubMed  Google Scholar 

  101. Chen, W., Bacanamwo, M. & Harrison, D. G. Activation of p300 histone acetyltransferase activity is an early endothelial response to laminar shear stress and is essential for stimulation of endothelial nitric-oxide synthase mRNA transcription. J. Biol. Chem. 283, 16293–16298 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Choi, K. C. et al. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res. 69, 583–592 (2009).

    CAS  PubMed  Google Scholar 

  103. Balasubramanyam, K. et al. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J. Biol. Chem. 279, 33716–33726 (2004).

    CAS  PubMed  Google Scholar 

  104. Wang, B. et al. Phosphorylation and acetylation of histone H3 and autoregulation by early growth response 1 mediate interleukin 1beta induction of early growth response 1 transcription. Arterioscler. Thromb. Vasc. Biol. 30, 536–545 (2010).

    CAS  PubMed  Google Scholar 

  105. Shin, I. S. et al. Early growth response factor-1 is associated with intraluminal thrombus formation in human abdominal aortic aneurysm. J. Am. Coll. Cardiol. 53, 792–799 (2009).

    PubMed  Google Scholar 

  106. Abdel-Malak, N. A., Mofarrahi, M., Mayaki, D., Khachigian, L. M. & Hussain, S. N. Early growth response-1 regulates angiopoietin-1-induced endothelial cell proliferation, migration, and differentiation. Arterioscler. Thromb. Vasc. Biol. 29, 209–216 (2009).

    CAS  PubMed  Google Scholar 

  107. Oka, D. et al. The presence of aberrant DNA methylation in noncancerous esophageal mucosae in association with smoking history: a target for risk diagnosis and prevention of esophageal cancers. Cancer 115, 3412–3426 (2009).

    CAS  PubMed  Google Scholar 

  108. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Slatkin, M. Epigenetic inheritance and the missing heritability problem. Genetics 182, 845–850 (2009).

    PubMed  PubMed Central  Google Scholar 

  110. [No authors listed] Moving AHEAD with an international human epigenome project. Nature 454, 711–715 (2008).

Download references

Acknowledgements

This work was supported by grants from the National Heart, Lung and Blood Institute (HL-54776), and the National Institute of Diabetes and Digestive and Kidney Diseases (DK075030), and by contracts 53-K06-5-10 and 58-1950-9-001 from the USDA Department of Agricultural Research Service.

Author information

Authors and Affiliations

Authors

Contributions

J. M. Ordovás and C. E. Smith contributed to discussion of content for the article, researched data to include in the manuscript, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments.

Corresponding author

Correspondence to José M. Ordovás.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordovás, J., Smith, C. Epigenetics and cardiovascular disease. Nat Rev Cardiol 7, 510–519 (2010). https://doi.org/10.1038/nrcardio.2010.104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing