Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Peripheral artery disease. Part 2: medical and endovascular treatment

Abstract

The treatment of peripheral artery disease (PAD) focuses on risk factor modification, cardiovascular event reduction, limb viability, and symptom improvement. Hypertension, hyperlipidemia, and diabetes mellitus should all be controlled to recommended target levels, and smoking cessation is vital. Antiplatelet therapies, such as aspirin or clopidogrel, should be administered in all patients unless contraindicated. Whenever possible, patients who present with claudication should be offered a regimen comprised of both medical and exercise therapy, which often results in substantial improvement in symptoms. For patients presenting with more-advanced disease, such as acute limb ischemia, critical limb ischemia, and severely-limiting symptoms of PAD, revascularization is often necessary. As a result of the rapid evolution in endovascular revascularization technology and expertise, many patients with PAD can be treated percutaneously. Therefore, in this Review, we will focus on medical therapy and endovascular revascularization of patients with PAD, with reference to surgical bypass in specific clinical scenarios.

Key Points

  • The three major objectives in the treatment of peripheral artery disease are to reduce cardiovascular morbidity and mortality, prevent amputation, and improve the symptom of claudication

  • In patients with peripheral artery disease, hypertension, hyperlipidemia, and diabetes must be controlled to recommended goals and smoking cessation is vital

  • Management of symptoms in patients with claudication starts with a combination of exercise therapy and cilostazol

  • Revascularization should be considered in patients with acute limb ischemia, chronic critical limb ischemia, iliac artery stenosis, or infrainguinal disease with lifestyle-interfering claudication nonresponsive to a trial of exercise and cilostazol

  • Endovascular intervention is the preferred method of revascularization in many scenarios; surgical revascularization is reserved for specific clinical scenarios and for cases where percutaneous therapy is not feasible or durable

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approach for the patient who presents with claudication that interferes with their lifestyle.
Figure 2: CT and catheter-based angiograms from a 62-year-old man with diabetes who experienced 'one-half block' bilateral calf claudication.
Figure 3: Femoropopliteal intervention.

Similar content being viewed by others

References

  1. Lau, J. F., Weinberg, M. D. & Olin, J. W. Peripheral artery disease. Part 1: clinical evaluation and noninvasive diagnosis. Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2011.66.

    Article  PubMed  Google Scholar 

  2. Criqui, M. H. Peripheral arterial disease—epidemiological aspects. Vasc. Med. 6, 3–7 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Hobbs, S. D. & Bradbury, A. W. Smoking cessation strategies in patients with peripheral arterial disease: an evidence-based approach. Eur. J. Vasc. Endovasc. Surg. 26, 341–347 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Jonason, T. & Bergstrom, R. Cessation of smoking in patients with intermittent claudication. Effects on the risk of peripheral vascular complications, myocardial infarction and mortality. Acta Med. Scand. 221, 253–260 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Faulkner, K. W., House, A. K. & Castleden, W. M. The effect of cessation of smoking on the accumulative survival rates of patients with symptomatic peripheral vascular disease. Med. J. Aust. 1, 217–219 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Quick, C. R. & Cotton, L. T. The measured effect of stopping smoking on intermittent claudication. Br. J. Surg. 69 (Suppl.), S24–S26 (1982).

    PubMed  Google Scholar 

  7. Olin, J. W. et al. ACCF/AHA/ACR/SCAI/SIR/SVM/SVN/SVS 2010 performance measures for adults with peripheral artery disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on performance measures, the American College of Radiology, the Society for Cardiac Angiography and Interventions, the Society for Interventional Radiology, the Society for Vascular Medicine, the Society for Vascular Nursing, and the Society for Vascular Surgery (Writing Committee to Develop Clinical Performance Measures for Peripheral Artery Disease). Circulation 122, 2583–2618 (2010).

    Article  PubMed  Google Scholar 

  8. Jorenby, D. E. et al. A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. N. Engl. J. Med. 340, 685–691 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Cahill, K., Stead, L. F. & Lancaster, T. Nicotine receptor partial agonists for smoking cessation. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD006103. doi: 10.1002/14651858.CD006103.pub5 (2011).

  10. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

  11. The Scandinavian Simvastatin Survival Study (4S) investigators. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344, 1383–1389 (1994).

  12. Sacks, F. M. et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N. Engl. J. Med. 335, 1001–1009 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N. Engl. J. Med. 339, 1349–1357 (1998).

  14. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 7–22 (2002).

  15. Heart Protection Study Collaborative Group. Randomized trial of the effects of cholesterol-lowering with simvastatin on peripheral vascular and other major vascular outcomes in 20,536 people with peripheral arterial disease and other high-risk conditions. J. Vasc. Surg. 45, 645–654 (2007).

  16. Giri, J. et al. Statin use and functional decline in patients with and without peripheral arterial disease. J. Am. Coll. Cardiol. 47, 998–1004 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Hirsch, A. T. et al. ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): executive summary a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease) endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. J. Am. Coll. Cardiol. 47, 1239–1312 (2006).

    Article  PubMed  Google Scholar 

  18. Chobanian, A. V. et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289, 2560–2572 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Cushman, W. C. et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1575–1585 (2010).

    Article  PubMed  CAS  Google Scholar 

  20. Cooper-DeHoff, R. M. et al. Tight blood pressure control and cardiovascular outcomes among hypertensive patients with diabetes and coronary artery disease. JAMA 304, 61–68 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Olin, J. W. Hypertension and peripheral arterial disease. Vasc. Med. 10, 241–246 (2005).

    Article  PubMed  Google Scholar 

  22. Clement, D. L. Treatment of hypertension in patients with peripheral arterial disease: an update. Curr. Hypertens. Rep. 11, 271–276 (2009).

    Article  PubMed  Google Scholar 

  23. Yusuf, S. et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N. Engl. J. Med. 342, 145–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Fox, K. M. for the EURopean trial On reduction of cardiac events with Perindopril in stable coronary Artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet 362, 782–788 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Radack, K. & Deck, C. Beta-adrenergic blocker therapy does not worsen intermittent claudication in subjects with peripheral arterial disease. A meta-analysis of randomized controlled trials. Arch. Intern. Med. 151, 1769–1776 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Moritz, T., Duckworth, W. & Abraira, C. Veterans Affairs diabetes trial—corrections. N. Engl. J. Med. 361, 1024–1025 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Patel, A. et al. for the ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998).

  29. Gerstein, H. C. et al. for the Action to Control Cardiovascular Risk in Diabetes Study Group, Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. American Diabetes Association. Peripheral arterial disease in people with diabetes. Diabetes Care 26, 3333–3341 (2003).

  31. Bazzano, L. A., Reynolds, K., Holder, K. N. & He, J. Effect of folic acid supplementation on risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. JAMA 296, 2720–2726 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 324, 71–86 (2002).

  33. Sobel, M. & Verhaeghe, R. Antithrombotic therapy for peripheral artery occlusive disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133, 815S–843S (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Norgren, L. et al. for the TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J. Vasc. Surg. 45 (Suppl. S), S5–S67 (2007).

    Article  PubMed  Google Scholar 

  35. Baigent, C. et al. for the Antithrombotic Trialists' (ATT) Collaboration, Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 373, 1849–1860 (2009).

    Article  PubMed  CAS  Google Scholar 

  36. Berger, J. S., Krantz, M. J., Kittelson, J. M. & Hiatt, W. R. Aspirin for the prevention of cardiovascular events in patients with peripheral artery disease: a meta-analysis of randomized trials. JAMA 301, 1909–1919 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Fowkes, F. G. et al. for the Aspirin for Asymptomatic Atherosclerosis Trialists. Aspirin for prevention of cardiovascular events in a general population screened for a low ankle brachial index: a randomized controlled trial. JAMA 303, 841–848 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Belch, J. et al. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ 337, a1840 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Janzon, L. et al. Prevention of myocardial infarction and stroke in patients with intermittent claudication; effects of ticlopidine. Results from STIMS, the Swedish Ticlopidine Multicentre Study. J. Intern. Med. 227, 301–308 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Bergqvist, D., Almgren, B. & Dickinson, J. P. Reduction of requirement for leg vascular surgery during long-term treatment of claudicant patients with ticlopidine: results from the Swedish Ticlopidine Multicentre Study (STIMS). Eur. J. Vasc. Endovasc. Surg. 10, 69–76 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Hiatt, W. R. Medical treatment of peripheral arterial disease and claudication. N. Engl. J. Med. 344, 1608–1621 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Hiatt, W. R. & Krantz, M. J. Masterclass series in peripheral arterial disease. Antiplatelet therapy for peripheral arterial disease and claudication. Vasc. Med. 11, 55–60 (2006).

    Article  PubMed  Google Scholar 

  43. The CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet 348, 1329–1339 (1996).

  44. Bhatt, D. L. et al. for the CHARISMA Investigators. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N. Engl. J. Med. 354, 1706–1717 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Bhatt, D. L. et al. for the CHARISMA Investigators. Patients with prior myocardial infarction, stroke, or symptomatic peripheral arterial disease in the CHARISMA trial. J. Am. Coll. Cardiol. 49, 1982–1988 (2007).

    Article  PubMed  Google Scholar 

  46. Wiviott, S. D. et al. for the TRITON-TIMI 38 Investigators. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357, 2001–2015 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Bhatt, D. L. Prasugrel in clinical practice. N. Engl. J. Med. 361, 940–942 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Morrow, D. A. et al. for the TRA 2° P-TIMI 50 Investigators. Evaluation of a novel antiplatelet agent for secondary prevention in patients with a history of atherosclerotic disease: design and rationale for the Thrombin-Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events (TRA 2 degrees P)-TIMI 50 trial. Am. Heart. J. 158, 335–341e3 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Becker, R. C. et al. for the TRA-PCI Investigators. Safety and tolerability of SCH 530348 in patients undergoing non-urgent percutaneous coronary intervention: a randomised, double-blind, placebo-controlled phase II study. Lancet 373, 919–928 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Anand, S. et al. for the Warfarin Antiplatelet Vascular Evaluation Trial Investigators. Oral anticoagulant and antiplatelet therapy and peripheral arterial disease. N. Engl. J. Med. 357, 217–227 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Hamburg, N. M. & Balady, G. J. Exercise rehabilitation in peripheral artery disease: functional impact and mechanisms of benefits. Circulation 123, 87–97 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Watson, L., Ellis, B. & Leng, G. C. Exercise for intermittent claudication. Cochrane Database of Systematic Reviews, Issue 4. Art. No.: CD000990. doi: 10.1002/14651858.CD000990.pub2 (2008).

  53. Dawson, D. L., Cutler, B. S., Meissner, M. H. & Strandness, D. E. Jr. Cilostazol has beneficial effects in treatment of intermittent claudication: results from a multicenter, randomized, prospective, double-blind trial. Circulation 98, 678–686 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Money, S. R. et al. Effect of cilostazol on walking distances in patients with intermittent claudication caused by peripheral vascular disease. J. Vasc. Surg. 27, 267–274 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Lundgren, F., Dahllöf, A. G., Lundholm, K., Schersten, T. & Volkmann, R. Intermittent claudication—surgical reconstruction or physical training? A prospective randomized trial of treatment efficiency. Ann. Surg. 209, 346–355 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Creasy, T. S., McMillan, P. J., Fletcher, E. W., Collin, J. & Morris, P. J. Is percutaneous transluminal angioplasty better than exercise for claudication? Preliminary results from a prospective randomised trial. Eur. J. Vasc. Surg. 4, 135–140 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Gardner, A. W. & Poehlman, E. T. Exercise rehabilitation programs for the treatment of claudication pain. A meta-analysis. JAMA 274, 975–980 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Bendermacher, B. L., Willigendael, E. M., Teijink, J. A. & Prins, M. H. Supervised exercise therapy versus non-supervised exercise therapy for intermittent claudication. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD005263. doi: 10.1002/14651858.CD005263.pub2 (2006).

  59. White, C. Clinical practice. Intermittent claudication. N. Engl. J. Med. 356, 1241–1250 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Gray, B. H. et al. for the AHA Writing Group 7. Atherosclerotic Peripheral Vascular Disease Symposium II: lower-extremity revascularization: state of the art. Circulation 118, 2864–2872 (2008).

    Article  PubMed  Google Scholar 

  61. White, C. J. & Gray, W. A. Endovascular therapies for peripheral arterial disease: an evidence-based review. Circulation 116, 2203–2215 (2007).

    Article  PubMed  Google Scholar 

  62. Bronas, U. G. et al. for the CLEVER Research Group. Design of the multicenter standardized supervised exercise training intervention for the claudication: exercise vs endoluminal revascularization (CLEVER) study. Vasc. Med. 14, 313–321 (2009).

    Article  PubMed  Google Scholar 

  63. Rao, K. M., Simel, D. L., Cohen, H. J., Crawford, J. & Currie, M. S. Effects of pentoxifylline administration on blood viscosity and leukocyte cytoskeletal function in patients with intermittent claudication. J. Lab. Clin. Med. 115, 738–744 (1990).

    CAS  PubMed  Google Scholar 

  64. Franzini, E., Sellak, H., Babin-Chevaye, C., Hakim, J. & Pasquier, C. Effects of pentoxifylline on the adherence of polymorphonuclear neutrophils to oxidant-stimulated human endothelial cells: involvement of cyclic AMP. J. Cardiovasc. Pharmacol. 25 (Suppl. 2), S92–S95 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Kohda, N. et al. Effect of cilostazol, a phosphodiesterase III inhibitor, on experimental thrombosis in the porcine carotid artery. Thromb. Res. 96, 261–268 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Reilly, M. P. & Mohler, E. R. 3rd Cilostazol: treatment of intermittent claudication. Ann. Pharmacother. 35, 48–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Beebe, H. G. et al. A new pharmacological treatment for intermittent claudication: results of a randomized, multicenter trial. Arch. Intern. Med. 159, 2041–2050 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Thompson, P. D., Zimet, R., Forbes, W. P. & Zhang, P. Meta-analysis of results from eight randomized, placebo-controlled trials on the effect of cilostazol on patients with intermittent claudication. Am. J. Cardiol. 90, 1314–1319 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Dawson, D. L. et al. A comparison of cilostazol and pentoxifylline for treating intermittent claudication. Am. J. Med. 109, 523–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Hiatt, W. R., Money, S. R. & Brass, E. P. Long-term safety of cilostazol in patients with peripheral artery disease: the CASTLE study (Cilostazol: A Study in Long-term Effects). J. Vasc. Surg. 47, 330–336 (2008).

    Article  PubMed  Google Scholar 

  71. Pratt, C. M. Analysis of the cilostazol safety database. Am. J. Cardiol. 87, 28D–33D (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Nony, P. et al. Evaluation of the effect of phosphodiesterase inhibitors on mortality in chronic heart failure patients. A meta-analysis. Eur. J. Clin. Pharmacol. 46, 191–196 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Iida, O. et al. Cilostazol reduces restenosis after endovascular therapy in patients with femoropopliteal lesions. J. Vasc. Surg. 48, 144–149 (2008).

    Article  PubMed  Google Scholar 

  74. Soga, Y. et al. Efficacy of cilostazol after endovascular therapy for femoropopliteal artery disease in patients with intermittent claudication. J. Am. Coll. Cardiol. 53, 48–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Olin, J. W. & Sealove, B. A. Peripheral artery disease: current insight into the disease and its diagnosis and management. Mayo Clin. Proc. 85, 678–692 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kalish, J. & Hamdan, A. Management of diabetic foot problems. J. Vasc. Surg. 51, 476–486 (2010).

    Article  PubMed  Google Scholar 

  77. Pomposelli, F. B. et al. A decade of experience with dorsalis pedis artery bypass: analysis of outcome in more than 1,000 cases. J. Vasc. Surg. 37, 307–315 (2003).

    Article  PubMed  Google Scholar 

  78. Conte, M. S. et al. for the PREVENT III Investigators. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J. Vasc. Surg. 43, 742–751 (2006).

    Article  PubMed  Google Scholar 

  79. Goshima, K. R., Mills, J. L., Sr & Hughes, J. D. A new look at outcomes after infrainguinal bypass surgery: traditional reporting standards systematically underestimate the expenditure of effort required to attain limb salvage. J. Vasc. Surg. 39, 330–335 (2004).

    Article  PubMed  Google Scholar 

  80. Löfberg, A. M. et al. The use of below-knee percutaneous transluminal angioplasty in arterial occlusive disease causing chronic critical limb ischemia. Cardiovasc. Intervent. Radiol. 19, 317–322 (1996).

    Article  PubMed  Google Scholar 

  81. DeRubertis, B. G. et al. Percutaneous intervention for infrainguinal occlusive disease in women: equivalent outcomes despite increased severity of disease compared with men. J. Vasc. Surg. 48, 150–157 (2008).

    Article  PubMed  Google Scholar 

  82. Lawrence, P. F. & Chandra, A. When should open surgery be the initial option for critical limb ischaemia? Eur. J. Vasc. Endovasc. Surg. 39 (Suppl. 1), S32–S37 (2010).

    Article  PubMed  Google Scholar 

  83. Vorwerk, D., Günther, R. W., Schürmann, K. & Wendt, G. Aortic and iliac stenoses: follow-up results of stent placement after insufficient balloon angioplasty in 118 cases. Radiology 198, 45–48 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Park, K. B. et al. Stent placement for chronic iliac arterial occlusive disease: the results of 10 years experience in a single institution. Korean J. Radiol. 6, 256–266 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Murphy, T. P. et al. Aortoiliac insufficiency: long-term experience with stent placement for treatment. Radiology 231, 243–249 (2004).

    Article  PubMed  Google Scholar 

  86. Leville, C. D. et al. Endovascular management of iliac artery occlusions: extending treatment to TransAtlantic Inter-Society Consensus class C and D patients. J. Vasc. Surg. 43, 32–39 (2006).

    Article  PubMed  Google Scholar 

  87. Bosch, J. L. & Hunink, M. G. Meta-analysis of the results of percutaneous transluminal angioplasty and stent placement for aortoiliac occlusive disease. Radiology 204, 87–96 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Tetteroo, E. et al. Intraarterial pressure gradients after randomized angioplasty or stenting of iliac artery lesions. Dutch Iliac Stent Trial Study Group. Cardiovasc. Intervent. Radiol. 19, 411–417 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Klein, W. M., van der Graaf, Y., Seegers, J., Moll, F. L. & Mali, W. P. Long-term cardiovascular morbidity, mortality, and reintervention after endovascular treatment in patients with iliac artery disease: The Dutch Iliac Stent Trial Study. Radiology 232, 491–498 (2004).

    Article  PubMed  Google Scholar 

  90. Mukherjee, D. & Inahara, T. Endarterectomy as the procedure of choice for atherosclerotic occlusive lesions of the common femoral artery. Am. J. Surg. 157, 498–500 (1989).

    Article  CAS  PubMed  Google Scholar 

  91. Springhorn, M. E., Kinney, M., Littooy, F. N., Saletta, C. & Greisler, H. P. Inflow atherosclerotic disease localized to the common femoral artery: treatment and outcome. Ann. Vasc. Surg. 5, 234–240 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Silva, J. A. et al. Percutaneous revascularization of the common femoral artery for limb ischemia. Catheter. Cardiovasc. Interv. 62, 230–233 (2004).

    Article  PubMed  Google Scholar 

  93. Mahmud, E., Keramati, S., Salami, A., Palakodeti, V. & Tsimikas, S. Expanded applications of rotational atherectomy in contemporary coronary and peripheral interventional practice. J. Invasive Cardiol. 17, 207–210 (2005).

    PubMed  Google Scholar 

  94. Fowkes, F. G. et al. Edinburgh Artery Study: prevalence of asymptomatic and symptomatic peripheral arterial disease in the general population. Int. J. Epidemiol. 20, 384–392 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Capek, P., McLean, G. K. & Berkowitz, H. D. Femoropopliteal angioplasty. Factors influencing long-term success. Circulation 83, I70–I80 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Johnston, K. W. Femoral and popliteal arteries: reanalysis of results of balloon angioplasty. Radiology 183, 767–771 (1992).

    Article  CAS  PubMed  Google Scholar 

  97. Murray, R. R. Jr. et al. Long-segment femoropopliteal stenoses: is angioplasty a boon or a bust? Radiology 162, 473–476 (1987).

    Article  PubMed  Google Scholar 

  98. Gray, B. H. & Olin, J. W. Limitations of percutaneous transluminal angioplasty with stenting for femoropopliteal arterial occlusive disease. Semin. Vasc. Surg. 10, 8–16 (1997).

    CAS  PubMed  Google Scholar 

  99. Krankenberg, H. et al. Nitinol stent implantation versus percutaneous transluminal angioplasty in superficial femoral artery lesions up to 10 cm in length: the femoral artery stenting trial (FAST). Circulation 116, 285–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Schillinger, M. et al. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N. Engl. J. Med. 354, 1879–1888 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Schillinger, M. et al. Sustained benefit at 2 years of primary femoropopliteal stenting compared with balloon angioplasty with optional stenting. Circulation 115, 2745–2749 (2007).

    Article  PubMed  Google Scholar 

  102. Laird, J. R. et al. for the RESILIENT Investigators. Nitinol stent implantation versus balloon angioplasty for lesions in the superficial femoral artery and proximal popliteal artery: twelve-month results from the RESILIENT randomized trial. Circ. Cardiovasc. Interv. 3, 267–276 (2010).

    Article  PubMed  Google Scholar 

  103. Scheinert, D. et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 45, 312–315 (2005).

    Article  PubMed  Google Scholar 

  104. Duda, S. H. et al. Drug-eluting and bare nitinol stents for the treatment of atherosclerotic lesions in the superficial femoral artery: long-term results from the SIROCCO trial. J. Endovasc. Ther. 13, 701–710 (2006).

    Article  PubMed  Google Scholar 

  105. Tepe, G. et al. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N. Engl. J. Med. 358, 689–699 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Dake, MD. The Zilver PTX trial. Presented at the 2010 Transcatheter Cardiovascular Therapeutics Congress.

  107. Oliva, V. L. & Soulez, G. Sirolimus-eluting stents versus the superficial femoral artery: second round. J. Vasc. Interv. Radiol. 16, 313–315 (2005).

    Article  PubMed  Google Scholar 

  108. Duda, S. H. et al. Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the SIROCCO II trial. J. Vasc. Interv. Radiol. 16, 331–338 (2005).

    Article  PubMed  Google Scholar 

  109. Lammer, J. Superficial femoral artery Treatment with Drug-Eluting Stents (STRIDES) trial. Presented at the 2009 Cardiovascular and Interventional Radiological Society of Europe Congress.

  110. Krepel, V. M., van Andel, G. J., van Erp, W. F. & Breslau, P. J. Percutaneous transluminal angioplasty of the femoropopliteal artery: initial and long-term results. Radiology 156, 325–328 (1985).

    Article  CAS  PubMed  Google Scholar 

  111. Dorros, G., Lewin, R. F., Jamnadas, P. & Mathiak, L. M. Below-the-knee angioplasty: tibioperoneal vessels, the acute outcome. Cathet. Cardiovasc. Diagn. 19, 170–178 (1990).

    Article  CAS  PubMed  Google Scholar 

  112. Söder, H. K. et al. Prospective trial of infrapopliteal artery balloon angioplasty for critical limb ischemia: angiographic and clinical results. J. Vasc. Interv. Radiol. 11, 1021–1031 (2000).

    Article  PubMed  Google Scholar 

  113. Rastogi, S. & Stavropoulos, S. W. Infrapopliteal angioplasty. Tech. Vasc. Interv. Radiol. 7, 33–39 (2004).

    Article  PubMed  Google Scholar 

  114. Rand, T. et al. PTA versus carbofilm-coated stents in infrapopliteal arteries: pilot study. Cardiovasc. Intervent. Radiol. 29, 29–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Siablis, D. et al. Sirolimus-eluting versus bare stents for bailout after suboptimal infrapopliteal angioplasty for critical limb ischemia: 6-month angiographic results from a nonrandomized prospective single-center study. J. Endovasc. Ther. 12, 685–695 (2005).

    Article  PubMed  Google Scholar 

  116. Stein, P. D., Dalen, J. E., Goldman, S. & Theroux, P. Antithrombotic therapy in patients with saphenous vein and internal mammary artery bypass grafts. Chest 119, 278S–282S (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Tangelder, M. J., Lawson, J. A., Algra, A. & Eikelboom, B. C. Systematic review of randomized controlled trials of aspirin and oral anticoagulants in the prevention of graft occlusion and ischemic events after infrainguinal bypass surgery. J. Vasc. Surg. 30, 701–709 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Belch, J. J. et al. Results of the randomized, placebo-controlled clopidogrel and acetylsalicylic acid in bypass surgery for peripheral arterial disease (CASPAR) trial. J. Vasc. Surg. 52, 825–833 (2010).

    Article  PubMed  Google Scholar 

  119. Wixon, C. L., Mills, J. L., Westerband, A., Hughes, J. D. & Ihnat, D. M. An economic appraisal of lower extremity bypass graft maintenance. J. Vasc. Surg. 32, 1–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Donaldson, M. C., Mannick, J. A. & Whittemore, A. D. Causes of primary graft failure after in situ saphenous vein bypass grafting. J. Vasc. Surg. 15, 113–118 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. Bergamini, T. M., Towne, J. B., Bandyk, D. F., Seabrook, G. R. & Schmitt, D. D. Experience with in situ saphenous vein bypasses during 1981 to 1989: determinant factors of long-term patency. J. Vasc. Surg. 13, 137–147 (1991).

    Article  CAS  PubMed  Google Scholar 

  122. Mills, J. L. Sr. et al. The natural history of intermediate and critical vein graft stenosis: recommendations for continued surveillance or repair. J. Vasc. Surg. 33, 273–278 (2001).

    Article  PubMed  Google Scholar 

  123. Armstrong, P. A. et al. Optimizing infrainguinal arm vein bypass patency with duplex ultrasound surveillance and endovascular therapy. J. Vasc. Surg. 40, 724–730 (2004).

    Article  PubMed  Google Scholar 

  124. Soga, Y. et al. Mid-term clinical outcome and predictors of vessel patency after femoropopliteal stenting with self-expandable nitinol stent. J Vasc. Surg. 52, 608–615 (2010).

    Article  PubMed  Google Scholar 

  125. Baril, D. T. et al. Outcomes of endovascular interventions for TASC II B and C femoropopliteal lesions. J. Vasc. Surg. 48, 627–633 (2008).

    Article  PubMed  Google Scholar 

  126. Baril, D. T. et al. Endovascular interventions for TASC II D femoropopliteal lesions. J. Vasc. Surg. 51, 1406–1412 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to discussion of content, writing the manuscript, and review/editing of the manuscript before submission and after peer-review. M. D. Weinberg and J. W. Olin also researched data for the article.

Corresponding author

Correspondence to Jeffrey W. Olin.

Ethics declarations

Competing interests

K. Rosenfield has received research support as an investigator for Abbott Vascular, Atrium Medical Corporation, Bard Peripheral Vascular, Baxter Healthcare, IDev Technologies, Inc., Invatec/Medtronic, and Lutonix. He is a consultant/advisory board member for Abbott Vascular, Baxter Healthcare, Becker Venture Services Group LLC, Boston Biomedical, Inc., Cordis, Complete Conference Management, and HCRI. He is a member of the data safety and monitoring board for Boston Scientific. He has equity and/or stock options in CardioMEMS, Contego Medical LLC, Icon Plc, Lumen Biomedical, Medical Simulation Corporation, Micell Technologies, and Primacea. He received honoraria as a member of the board of governors of VIVA Physicians. J. W. Olin has acted as a consultant for Bristol-Myers Squibb, Merck & Co., Inc., and Sanofi-Aventis, and has received research support from Merck & Co., Inc. M. D. Weinberg and J. F. Lau declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinberg, M., Lau, J., Rosenfield, K. et al. Peripheral artery disease. Part 2: medical and endovascular treatment. Nat Rev Cardiol 8, 429–441 (2011). https://doi.org/10.1038/nrcardio.2011.81

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.81

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing