Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

mTOR signaling and drug development in cancer

Abstract

Mammalian target of rapamycin (mTOR) is a protein kinase of the PI3K/Akt signaling pathway. Activation of mTOR in response to growth, nutrient and energy signals leads to an increase in protein synthesis, which is required for tumor development. This feature makes mTOR an attractive target for cancer therapy. First-generation mTOR inhibitors are sirolimus derivatives (rapalogs), which have been evaluated extensively in cancer patients. Everolimus and temsirolimus are already approved for the treatment of renal-cell carcinoma. Temsirolimus is also approved for the treatment of mantle-cell lymphoma. These drugs, in addition to ridaforolimus (formerly deforolimus) and sirolimus, are currently being evaluated in clinical trials of various cancers. Second-generation mTOR inhibitors are small molecules that target the kinase domain, and have also entered clinical development. Clinical trials are underway to identify additional malignancies that respond to mTOR inhibitors, either alone or in combination with other therapies. Future research should evaluate the optimal drug regimens, schedules, patient populations, and combination strategies for this novel class of agents.

Key Points

  • Mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation in response to growth factors and energy stimuli

  • In some tumor types, such as renal-cell carcinoma and certain lymphomas, mTOR has a key role in tumor cell proliferation and angiogenesis

  • Temsirolimus and everolimus administered as single agents are associated with substantial improvements in patients with advanced renal-cell carcinoma, and are approved for use in this indication

  • Temsirolimus is also approved for use in mantle-cell lymphoma, where it has shown a notable improvement in progression-free survival

  • Biomarkers that assess pathway activation are being explored to identify tumor types that are sensitive to mTOR inhibition

  • Combinations of targeted therapies could improve outcomes by augmenting anti-tumor activity and overcoming mechanisms of resistance

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mTOR signaling pathways.
Figure 2: mTOR pathway feedback loops.

Similar content being viewed by others

References

  1. Lane, H. A. & Breuleux, M. Optimal targeting of the mTORC1 kinase in human cancer. Curr. Opin. Cell Biol. 21, 219–229 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Abraham, R. T. & Eng, C. H. Mammalian target of rapamycin as a therapeutic target in oncology. Expert Opin. Ther. Targets 12, 209–222 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Marone, R., Cmiljanovic, V., Giese, B. & Wymann, M. P. Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim. Biophys. Acta 1784, 159–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Copp, J., Manning, G. & Hunter, T. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res. 69, 1821–1827 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garcia, J. A. & Danielpour, D. Mammalian target of rapamycin inhibition as a therapeutic strategy in the management of urologic malignancies. Mol. Cancer Ther. 7, 1347–1354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang, J. & Manning, B. D. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem. Soc. Trans. 37, 217–222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shah, O. J., Wang, Z. & Hunter, T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol. 14, 1650–1656 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Carracedo, A. et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118, 3065–3074 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. O'Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bjornsti, M. A. & Houghton, P. J. Lost in translation: dysregulation of cap-dependent translation and cancer. Cancer Cell 5, 519–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Bjornsti, M. A. & Houghton, P. J. The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer 4, 335–348 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Faivre, S., Kroemer, G. & Raymond, E. Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov. 5, 671–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Hudes, G. R. Targeting mTOR in renal cell carcinoma. Cancer 115, 2313–2320 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Grünwald, V. et al. Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res. 62, 6141–6145 (2002).

    PubMed  Google Scholar 

  17. Aguirre, D. et al. Bcl-2 and CCND1/CDK4 expression levels predict the cellular effects of mTOR inhibitors in human ovarian carcinoma. Apoptosis 9, 797–805 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. deGraffenried, L. A. et al. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin. Cancer Res. 10, 8059–8067 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Dancey, J. in ASCO Educational Book 2000 68–75 (Lippincott Williams & Wilkins, Alexandria, Virginia, 2000).

    Google Scholar 

  20. Yu, K. et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 69, 6232–6240 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Breuleux, M. et al. Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition. Mol. Cancer Ther. 8, 742–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guba, M. et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat. Med. 8, 128–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Zhong, H., Hanrahan, C., van der Poel, H. & Simons, J. W. Hypoxia-inducible factor 1alpha and 1beta proteins share common signaling pathways in human prostate cancer cells. Biochem. Biophys. Res. Commun. 28 4, 352–356 (2001).

    Article  CAS  Google Scholar 

  24. Zhong, H. et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60, 1541–1545 (2000).

    CAS  PubMed  Google Scholar 

  25. Ballou, L. M. & Lin, R. Z. Rapamycin and mTOR kinase inhibitors. J. Chem. Biol. 1, 27–36 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Edinger, A. L., Linardic, C. M., Chiang, G. G., Thompson, C. B. & Abraham, R. T. Differential effects of rapamycin on mammalian target of rapamycin signaling functions in mammalian cells. Cancer Res. 63, 8451–8460 (2003).

    CAS  PubMed  Google Scholar 

  27. Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Cloughesy, T.F. et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 5, e8 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Shor, B. et al. A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis. Cancer Res. 68, 2934–2943 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Foster, D. A. & Toschi, A. Targeting mTOR with rapamycin: one dose does not fit all. Cell Cycle 8, 1026–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. O'Donnell, A. et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J. Clin. Oncol. 26, 1588–1595 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Tabernero, J. et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J. Clin. Oncol. 26, 1603–1610 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Fouladi, M. et al. Phase I study of everolimus in pediatric patients with refractory solid tumors. J. Clin. Oncol. 25, 4806–4812 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Hess, G. et al. Phase III study to evaluate temsirolimus compared with investigator's choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J. Clin. Oncol. 27, 3822–3829 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Ellard, S. et al. A randomized phase II study of two different schedules of RAD001C in patients with recurrent/metastatic breast cancer [abstract]. J. Clin. Oncol. 25, a3513 (2007).

    Google Scholar 

  36. Raymond, E. et al. Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J. Clin. Oncol. 22, 2336–2347 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Geoerger, B. et al. Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res. 61, 1527–1532 (2001).

    CAS  PubMed  Google Scholar 

  38. Brattström, C. et al. Pharmacokinetics and safety of single oral doses of sirolimus (rapamycin) in healthy male volunteers. Ther. Drug Monit. 22, 537–544 (2000).

    Article  PubMed  Google Scholar 

  39. Filler, G., Bendrick-Peart, J. & Christians, U. Pharmacokinetics of mycophenolate mofetil and sirolimus in children. Ther. Drug Monit. 30, 138–142 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Kirchner, G. I., Meier-Wiedenbach, I. & Manns, M. P. Clinical pharmacokinetics of everolimus. Clin. Pharmacokinet. 43, 83–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Neuhaus, P., Klupp, J. & Langrehr, J. M. mTOR inhibitors: an overview. Liver Transpl. 7, 473–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Duran, I. et al. Characterisation of the lung toxicity of the cell cycle inhibitor temsirolimus. Eur. J. Cancer 42, 1875–1880 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Gibbons, J. J. et al. The effect of CCI-779, a novel macrolide anti-tumor agent, on the growth of human tumor cells in vitro and in nude mouse xenografts in vivo [abstract]. Proc. Ame. Assoc. Cancer Res. 40, a2000 (1999).

    Google Scholar 

  44. Clackson, T. et al. Broad anti-tumor activity of AP23573, an mTOR inhibitor in clinical development [abstract]. Proc. Am. Soc. Clin. Oncol. 22, a882 (2003).

    Google Scholar 

  45. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Kapoor, A. Malignancy in kidney transplant recipients. Drugs 68 (Suppl. 1), 11–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Monaco, A. P. The role of mTOR inhibitors in the management of posttransplant malignancy. Transplantation 87, 157–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Krymskaya, V. P. & Goncharova, E. A. PI3K/mTORC1 activation in hamartoma syndromes: therapeutic prospects. Cell Cycle 8, 403–413 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Sampson, J. R. Therapeutic targeting of mTOR in tuberous sclerosis. Biochem. Soc. Trans. 37, 259–264 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Bissler, J. J. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med. 358, 140–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Davies, D. M. et al. Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N. Engl. J. Med. 358, 200–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Marsh, D. J. et al. Rapamycin treatment for a child with germline PTEN mutation. Nat. Clin. Pract. Oncol. 5, 357–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Del Bufalo, D. et al. Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus. Cancer Res. 66, 5549–5554 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Dal Col, J. et al. Distinct functional significance of Akt and mTOR constitutive activation in mantle cell lymphoma. Blood 111, 5142–5151 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Witzig, E. et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed non-hodgkin lymphoma (NHL) and Hodgkin Disease (HD) [abstract]. Haematologica 94 (Suppl. 2), a1081 (2009).

    Google Scholar 

  57. Smith, S. M. et al. Activity of single agent temsirolimus (CCI-779) in non-mantle cell non-Hodgkin lymphoma subtypes [abstract]. J. Clin. Oncol. 26, a8514 (2008).

    Article  Google Scholar 

  58. Witzig, T. E. et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J. Clin. Oncol. 2 3, 5347–5356 (2005).

    Article  CAS  Google Scholar 

  59. Ansell, S. M. et al. Anti-tumor activity of mTOR inhibitor temsirolimus for relapsed mantle cell lymphoma: A phase II trial in the North Central Cancer Treatment Group [abstract]. J. Clin. Oncol. 24, a2732 (2006).

    Google Scholar 

  60. Oza, A. M. et al. Molecular correlates associated with a phase II study of temsirolimus (CCI-779) in patients with metastatic or recurrent endometrial cancer--NCIC IND 160 [abstract]. J. Clin. Oncol. 2 4, a3003 (2006).

    Google Scholar 

  61. Chawla, S. P. et al. Updated results of a phase II trial of AP23573, a novel mTOR inhibitor, in patients (pts) with advanced soft tissue or bone sarcomas [abstract]. J. Clin. Oncol. 24, a9505 (2006).

    Google Scholar 

  62. Okuno, S. H. et al. A multicenter phase 2 consortium (P2C) study of the mTOR inhibitor CCI-779 in advanced soft tissue sarcomas (STS) [abstract]. J. Clin. Oncol. 24, a9504 (2006).

    Google Scholar 

  63. Duran, I. et al. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br. J. Cancer 95, 1148–1154 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yao, J. C. et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J. Clin. Oncol. 26, 4311–4318 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Oza, A. M. et al. A phase II study of temsirolimus (CCI-779) in patients with metastatic and/or locally advanced recurrent endometrial cancer previously treated with chemotherapy: NCIC CTG IND 160b [abstract]. J. Clin. Oncol. 26, a5516 (2008).

    Article  Google Scholar 

  66. Colombo, N. et al. A phase II trial of the mTOR inhibitor AP23573 as a single agent in advanced endometrial cancer [abstract]. J. Clin. Oncol. 25, a5516 (2007).

    Google Scholar 

  67. Pandya, K. J. et al. A randomized, phase II trial of two dose levels of temsirolimus (CCI-779) in patients with extensive-stage small-cell lung cancer who have responding or stable disease after induction chemotherapy: a trial of the Eastern Cooperative Oncology Group (E1500). J. Thorac. Oncol. 2, 1036–1041 (2007).

    Article  PubMed  Google Scholar 

  68. Owonikoko, T. K. et al. Phase II study of RAD001 (Everolimus) in previously treated small cell lung cancer (SCLC) [abstract]. J. Clin. Oncol. 26, a19017 (2008).

    Article  Google Scholar 

  69. Soria, J. C. et al. Efficacy of everolimus (RAD001) in patients with advanced NSCLC previously treated with chemotherapy alone or with chemotherapy and EGFR inhibitors. Ann. Oncol. 20, 1674–1681 (2009).

    Article  PubMed  Google Scholar 

  70. Wolpin, B. M. et al. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J. Clin. Oncol. 27, 193–198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Garrido-Laguna, I. et al. Preclinical identification of biomarkers of response to mTOR inhibitors and subsequent application in a phase II trial of sirolimus in pancreatic cancer patients refractory to gemcitabine [abstract]. J. Clin. Oncol. 27, a4612 (2009).

    Google Scholar 

  72. Margolin, K. et al. CCI-779 in metastatic melanoma: a phase II trial of the California Cancer Consortium. Cancer 104, 1045–1048 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Rao, R. D. et al. N0377: Results of NCCTG phase II trial of the mTOR inhibitor RAD-001 in metastatic melanoma [abstract]. J. Clin. Oncol. 25, a8530 (2007).

    Article  CAS  Google Scholar 

  74. Chang, S. M. et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest. New Drugs 23, 357–361 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Galanis, E. et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J. Clin. Oncol. 2 3, 5294–5304 (2005).

    Article  CAS  Google Scholar 

  76. Rizzieri, D. A. et al. A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin. Cancer Res. 14, 2756–2762 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Yee, K. W. et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin. Cancer Res. 12, 5165–5173 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Hartford, C. M. et al. A Phase I trial to determine the safety, tolerability, and maximum tolerated dose of deforolimus in patients with advanced malignancies. Clin. Cancer Res. 15, 1428–1434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hidalgo, M. et al. A phase I and pharmacokinetic study of temsirolimus (CCI-779) administered intravenously daily for 5 days every 2 weeks to patients with advanced cancer. Clin. Cancer Res. 12, 5755–5763 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Mita, M. M. et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J. Clin. Oncol. 26, 361–367 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Ma, W. W. et al. [18F]fluorodeoxyglucose positron emission tomography correlates with Akt pathway activity but is not predictive of clinical outcome during mTOR inhibitor therapy. J. Clin. Oncol. 27, 2697–2704 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cejka, D. et al. FDG uptake is a surrogate marker for defining the optimal biological dose of the mTOR inhibitor everolimus in vivo. Br. J. Cancer 100, 1739–1745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Salvesen, H. B. et al. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc. Natl Acad. Sci. USA 10 6, 4834–4839 (2009).

    Article  Google Scholar 

  84. Lane, H. The potential of mTOR inhibitors for the treatment of human cancers [abstract]. AACR Meeting Abstracts 2007, SY21–01 (2007).

  85. Manegold, P. C. et al. Antiangiogenic therapy with mammalian target of rapamycin inhibitor RAD001 (everolimus) increases radiosensitivity in solid cancer. Clin. Cancer Res. 14, 892–900 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Murphy, J. D. et al. Inhibition of mTOR radiosensitizes soft tissue sarcoma and tumor vasculature. Clin. Cancer Res. 15, 589–596 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Nagata, Y. et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6, 117–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Casa, A. J., Dearth, R. K., Litzenburger, B. C., Lee, A. V. & Cui, X. The type I insulin-like growth factor receptor pathway: a key player in cancer therapeutic resistance. Front. Biosci. 13, 3273–3287 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Lu, C. H. et al. Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin. Cancer Res. 13, 5883–5888 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. La Monica, S. et al. Everolimus restores gefitinib sensitivity in resistant non-small cell lung cancer cell lines. Biochem. Pharmacol. 78, 460–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Reardon, D. A. et al. Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma. J. Neurooncol. 96, 219–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Kreisl, T. N. et al. A pilot study of everolimus and gefitinib in the treatment of recurrent glioblastoma (GBM). J. Neurooncol. 92, 99–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Hudson, C. C. et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22, 7004–7014 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. El-Hashemite, N., Walker, V., Zhang, H. & Kwiatkowski, D. J. Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Cancer Res. 63, 5173–5177 (2003).

    CAS  PubMed  Google Scholar 

  95. Fischer, P. et al. Phase I study combining treatment with temsirolimus and sunitinib malate in patients with advanced renal cell carcinoma [abstract]. J. Clin. Oncol. 26, a16020 (2008).

    Article  Google Scholar 

  96. Giessinger, S. et al. A phase I study with a daily regimen of the oral mTOR inhibitor RAD001 (Everolimus) plus sorafenib for patients with metastatic renal cell cancer (MRCC) [abstract]. J. Clin. Oncol. 26, a14603 (2008).

    Article  Google Scholar 

  97. Merchan, J. R. et al. Phase I/II trial of CCI-779 and bevacizumab in stage IV renal cell carcinoma: Phase I safety and activity results [abstract]. J. Clin. Oncol. 25, a5034 (2007).

    Google Scholar 

  98. Patnaik, A. et al. A phase I, pharmacokinetic and pharmacodynamic study of sorafenib (S), a multi-targeted kinase inhibitor in combination with temsirolimus (T), an mTOR inhibitor in patients with advanced solid malignancies [abstract]. J. Clin. Oncol. 2 5, a3512 (2007).

    Google Scholar 

  99. Rosenberg, J. E. et al. Phase I study of sorafenib and RAD001 for metastatic clear cell renal cell carcinoma [abstract]. J. Clin. Oncol. 26, a5109 (2008).

    Article  Google Scholar 

  100. Merchan, J. R. et al. Phase I/II trial of CCI 779 and bevacizumab in advanced renal cell carcinoma (RCC): Safety and activity in RTKI refractory RCC patients [abstract]. J. Clin. Oncol. 27, a5039 (2009).

    Article  Google Scholar 

  101. Houghton, P. Targeting the IGF-1/mTOR pathway. AACR Meeting Abstracts 2008, PL05–03 (2008).

  102. Kurmasheva, R. T., Easton, J. B. & Houghton, P. J. Combined targeting of mTOR and the insulin-like growth factor pathway. ASCO Educational Book 2008, 460–464 (2008).

    Article  Google Scholar 

  103. McDaid, H. M. et al. Combined MEK and mTOR suppression is synergistic in human NSCLC and is mediated via inhibition of protein translation [abstract]. J. Clin. Oncol. 25, a10615 (2007).

    Google Scholar 

  104. Meier, F. et al. Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death and abrogates invasive growth of melanoma cells [abstract]. J. Clin. Oncol. 26, a20033 (2008).

    Article  Google Scholar 

  105. Carracedo, A., Baselga, J. & Pandolfi, P. P. Deconstructing feedback-signaling networks to improve anticancer therapy with mTORC1 inhibitors. Cell Cycle 7, 3805–3809 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Atkins, M. B. et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol. 22, 909–918 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Amato, R. J., Jac, J., Giessinger, S., Saxena, S. & Willis, J. P. A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer. Cancer 115, 2438–2446 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Chan, S. et al. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J. Clin. Oncol. 23, 5314–5322 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Farag, S. S. et al. Phase II trial of temsirolimus (CCI-779) in patients with relapsed or refractory multiple myeloma (MM): Preliminary results [abstract]. J. Clin. Oncol. 24, a7616 (2006).

    Google Scholar 

  110. Yee, K. W. L. et al. A phase II study of temsirolimus (CCI-779) in patients with advanced leukemias [abstract]. Blood (ASH Annual Meeting Abstracts) 104, a4523 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

J. Dancey has worked as a consultant for Wyeth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dancey, J. mTOR signaling and drug development in cancer. Nat Rev Clin Oncol 7, 209–219 (2010). https://doi.org/10.1038/nrclinonc.2010.21

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.21

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing