Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic aspects of immune-mediated adverse drug effects

Key Points

  • Adverse drug effects are an important cause of morbidity and mortality, which account for up to 5% of all hospital admissions. Immune-mediated adverse drug effects (IMADEs), although they are uncommon with some drug classes (for example, β-lactam-containing penicillin and cephalosporin derivatives), can occur in up to 10% of patients who are at risk.

  • IMADEs can affect many tissues and organs, including the skin, lungs, liver and kidneys. Although they are usually mild (for example, minor rashes), IMADEs can be severe and can lead to organ failure or life-threatening anaphylaxis.

  • Although the precise links are undefined, it is clear that genetic factors are important risk factors for IMADEs. Genetic polymorphisms have been identified in several biological systems that contribute to IMADEs, including drug-metabolizing enzymes, major histocompatibility complex antigens and immune receptors.

  • Important advances are beginning to be made in our understanding of the role of genetic polymorphisms as risk factors. The association between mutations in the gene for arylamine N-acetyltransferase and hypersensitivity to sulphonamides, sulphasalazine and dapsone, and between expression of the HLA-B*5701 phenotype and hypersensitivity to abacavir in HIV patients, are examples of areas in which these advances are beginning to bear fruit.

  • Because of their rarity, the study of the genetics of IMADEs is difficult. Moreover, owing to the inherent differences among species, models that are conducted in wild-type rodents have limited predictive value for humans.

  • It is anticipated that the growing catalogue of polymorphisms, coupled with advances in in silico modelling and the availability of increasingly sophisticated transgenic-rodent test systems, will improve the diagnosis and prediction of IMADEs, and, ultimately, the discovery and development of drugs with a markedly decreased risk of causing them.

Abstract

Adverse drug effects (ADEs) are of great importance in medicine and account for up to 5% of all hospital admissions. ADEs can arise from several mechanisms and a wide range of drugs can cause immune-mediated ADEs (IMADEs). For a drug to elicit an IMADE, it must be both immunogenic (that is, able to sensitize the immune system) and antigenic (that is, able to evoke a response from a sensitized immune system). Unlike protein therapeutics, small-molecule drugs (or xenobiotics) are usually neither immunogenic nor antigenic. IMADEs are therefore the result of complex interactions between drug-metabolizing enzymes, immune sensitization and immune effectors. The genetic aspects of this interplay are discussed in this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of drug haptens.
Figure 2: Generation of immune effectors.
Figure 3: The Coombs and Gell classification of hypersensitivity reactions.

Similar content being viewed by others

References

  1. Johnson-Reagan, L. & Bahna, S. L. Severe drug rashes in three siblings simultaneously. Allergy 58, 445–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Chaplin, D. D. Overview of the immune response J. Allergy Clin. Immunol. 111, S442–S449 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Naisbitt, D. J., Gordon, S. F., Pirmohamed, M. & Park, B. K. Immunological principles of drug reactions. The initiation and propagation of immune responses elicited by drug treatment. Drug Safety 23, 483–507 (2000). This is an important review of immune-mediated adverse drug effects.

    Article  CAS  PubMed  Google Scholar 

  4. Neugut, A. I., Ghatak, A. T. & Miller, R. L. Anaphylaxis in the United States and investigation into its epidemiology. Arch. Intern. Med. 161, 15–21 (2001). An interesting analysis of the incidence and causes of anaphylaxis, including drug-mediated cases.

    Article  CAS  PubMed  Google Scholar 

  5. Koren, E., Zuckerman, L. A. & Mire-Sluis, A. R. Immune responses to therapeutic proteins in humans: clinical significance, assessment and prediction. Curr. Pharm. Biotechnol. 3, 349–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Bugelski, P. J. & Treacy, G. Predictive power of preclinical studies in animals for the immunogenicity of recombinant therapeutic proteins in humans. Curr. Opin. Mol. Therapeutics 6, 10–16 (2004).

    CAS  Google Scholar 

  7. Landsteiner, K. & Jacobs, J. Studies on the sensitization of animals with simple chemical compounds. J. Exp. Med. 61, 643–656 (1935).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, A. P. A review of the common properties of drugs with idiosyncratic hepatotoxicity and the “multiple determinant hypothesis” for the manifestation of idiosyncratic drug toxicity. Chemico-Biol. Interact. 142, 7–23 (2002).

    Article  CAS  Google Scholar 

  9. Bougie, D., Johnson, S. T., Weitekamp, L. A. & Aster, R. H. Sensitivity to a metabolite of diclonfenac as a cause of immune hemolytic anemia. Blood 90, 407–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Rieder, M. J., Shear, N. H., Kanee, A., Tang, B. K. & Spielberg, S. P. Prominence of slow acetylator phenotype among patients with sulfonamide hypersensitivity reactions. Clin. Pharmacol. Ther. 49, 13–17 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Park, B. K., Pirmohamed, M. & Kitteringham, N. R. Idiosyncratic drug reactions: a mechanistic evaluation of risk factors. Br. J. Clin. Pharmacol. 34, 377–395 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Munthe, L. A., Os, A., Zangani, M. & Bogen, B. MHC-restricted Ig V region-driven T-B lymphocyte collaboration: B cell receptor ligation facilitates switch to IgG production. J. Immunol. 172, 7476–7484 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Pichler, W. J. Delayed drug hypersensitivity reactions. Ann. Intern. Med. 139, 683–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Stevanoviae, S. Structural basis of immunogenicity. Transplant. Immunol. 10, 122–136 (2002). This report presents a clear discussion of HLA proteins.

    Google Scholar 

  15. Simeoni, L., Kliche, S., Lindquist, J. & Schraven, B. Adaptors and linkers in T and B cells. Curr. Opin. Immunol. 16, 304–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, H. & Clarke, S. H. Regulation of B-cell development by antibody specificity. Curr. Opin. Immunol. 16, 246–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Cavani, A., Ottaviani, C., Nasorri, F., Sebastiani, S. & Girolomoni, G. Immunoregulation of hapten and drug induced immune reactions. Curr. Opin. Allergy Clin. Immunol. 3, 243–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Pirmohamed, M., Naisbitt, D. J., Gordon, F. & Park, B. K. The danger hypothesis: potential role in idiosyncratic drug reactions. Toxicology 181–182, 55–63 (2002). A thorough discussion of the implications of the danger hypothesis for IMADEs.

    Article  PubMed  Google Scholar 

  19. Layton, G. T., Stanworth, D. R. & Amos, H. E. Factors influencing the immunogenicity of the haptenic drug chlorhexidine in mice. II. The role of the carrier and adjuvants in the induction of IgE and IgG anti-hapten responses. Immunology 59, 459–465 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ohashi, P. S. & DeFranco, A. L. Making and breaking tolerance. Curr. Opin. Immunol. 14, 744–759 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Pichler, W. J. Drug-induced autoimmunity. Curr. Opin. Allergy Clin. Immunol. 3, 249–253 (2003). This paper raises the prospect that IMADEs and autoimmunity might be linked.

    Article  CAS  PubMed  Google Scholar 

  22. Coombs, R. R. A. & Gell, P. G. H. in Clinical Aspects of Immunology (eds Gell, P., Coombs, R. R. A. & Lacjman, P. J.) 761–781 (Blackwell Scientific Publications, Oxford, 1975).

    Google Scholar 

  23. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clones. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986). An introduction to the concept of the polarization of T H cell function into T H 1 cells that drive delayed (cell-mediated) immune responses, and T H 2 cells that drive immediate (allergic or IgE-mediated) immune responses.

    CAS  PubMed  Google Scholar 

  24. Gaspard, I. et al. IL-4 and interferon-γ mRNA induction in human peripheral lymphocytes specific for β-lactam antibiotics in immediate or delayed hypersensitivity reactions. J. Clin. Immunol. 20, 107–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Zanni, M. P. et al. T cell reactions in patients showing adverse immune reactions to drugs. Inflamm. Res. 45 (Suppl. 2), S79–S84 (1996).

    CAS  PubMed  Google Scholar 

  26. DeShazo, R. & Kemp, S. Allergic reactions to drugs and biologic agents. J. Am. Med. Assoc. 278, 1895–1906 (1997).

    Article  CAS  Google Scholar 

  27. Gruchalla, R. S. Understanding drug allergies. J. Allergy Clin. Immunol. 105, S637–S644 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Andrès, E. et al. Life-threatening idiosyncratic drug-induced agranulocytosis in elderly patients. Drugs Aging 21, 427–435 (2004).

    Article  PubMed  Google Scholar 

  29. Podevin, P. & Biour, M. Drug induced “allergic hepatitis”. Clin. Rev. Allergy Immunol. 13, 223–244 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Ravnskov, U. Glomerular, tubular and interstitial nephritis associated with non-steroidal antiinflammatory drugs. Evidence of a common mechanism. Br. J. Clin. Pharmacol. 47, 203–210 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ingelman-Sundberg, M. Functional consequences of xenobiotic metabolizing enzymes. Toxicol. Lett. 102–103, 155–160 (1998).

    Article  PubMed  Google Scholar 

  32. Johansson, I. et al. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc. Natl Acad. Sci. USA 90, 11825–11829 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heim, M. H. & Meyer, U. A. Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 336, 529–532 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Pirmohamed, M. et al. Association analysis of drug-metabolizing enzyme gene polymorphisms in HIV patients with co-trimoxazole hypersensitivity. Pharmacogenetics 10, 705–713 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Furet, Y. et al. Pertinence clinique du polymorphisme génétique de la N-acétyltransférase de type 2 (NAT2). Therapie 57, 427–431 (2002).

    CAS  PubMed  Google Scholar 

  36. Alfirevic, A. et al. Slow acetylator phenotype and genotype in HIV-positive patients with sulfamethoxazole hypersensitivity. Br. J. Clin. Pharmacol. 55, 158–165 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O'Neil, W. M. et al. Acetylator phenotype and genotype in HIV-infected patients with and without sulfonamide hypersensitivity. J. Clin. Pharmacol. 42, 613–619 (2002).

    Article  PubMed  Google Scholar 

  38. Green, V. J. et al. Genetic analysis of microsomal epoxide hydrolases in patients with carbamazepine hypersensitivity. Biochem. Pharmacol. 50, 1353–1359 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Gaedigk, A., Spielbereg, S. P. & Grant, D. M. Characterization of the microsomal epoxide hydrolase gene in patients with anticonvulsant adverse drug reactions. Pharmacogenetics 4, 142–153 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Burchell, B. Genetic variation of human UDP-glucuronosyltransferase: implications in disease and drug glucuronidation. Am. J. Pharmacogenomics 3, 37–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. King, C. D., Rios, G. R., Green, M. D. & Tephly, T. R. UDP-glucuronosyltransferases. Curr. Drug Metab. 1, 143–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. McFadden, S. A. Phenotypic variations in xenobiotic metabolism and adverse environmental response: focus on sulfur-dependent detoxification pathways. Toxicology 111, 43–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Ates, N. A. et al. Glutathione S-transferase polymorphisms in patients with drug eruption. Arch. Dermatol. Res. 295, 429–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Westphal, G. A. et al. Homozygous gene deletions of the glutathione S-transferases M1 and T1 are associated with thimerosal sensitization. Int. Arch. Occup. Environ. Health 73, 384–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Tiercy, J. M. Molecular basis of HLA polymorphism: implications in clinical transplantation. Transplant. Immunol. 9, 173–180 (2002).

    Article  CAS  Google Scholar 

  46. Apanius, V., Penn, D., Slev, P. R., Ruff, L. R. & Potts, W. K. The nature of selection on the major histocompatibility complex. Crit. Rev. Immunol. 17, 179–224 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Selvakumar, A., Steffens, U. & Dupont, B. Polymorphism and domain variability of human killer cell inhibitory receptors. Immunol. Rev. 155, 183–196 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Daser, A., Mitchison, H., Mitchison, A. & Muller, B. Non-classical-MHC genetics of immunological diseases in man and mouse. The key role of pro-inflammatory cytokine genes. Cytokine 8, 593–597 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Császár, A. & Ábel, T. Receptor polymorphisms and disease. Eur. J. Pharmacol. 414, 9–22 (2001).

    Article  PubMed  Google Scholar 

  50. Zhou, P., Cao, H., Smart, M. & David, C. Molecular basis of genetic polymorphism in major histocompatibility complex-linked proteasome gene (Lmp-2). Proc. Natl Acad. Sci. USA 90, 2681–2684 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vandebriel, R. J. Gene polymorphism within the immune system that may underlie drug allergy. Naunyn-Schmiedeberg Arch. Pharmacol. 369, 125–132 (2004). This paper takes a pragmatic approach to the issue of polymorphisms.

    Article  CAS  Google Scholar 

  52. Newton, J. L. et al. Dissection of class III major histocompatibility complex haplotypes associated with rheumatoid arthritis. Arthritis Rheum. 50, 2122–2129 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Spengler, H. & de Weck, A. L. Evaluation of genetic control of the immune response to penicillin in man. Monogr. Allergy 11, 116–123 (1977).

    CAS  PubMed  Google Scholar 

  54. Panayi, G. S., Wooley, P. & Batchelor, J. R. Genetic basis of rheumatoid disease: HLA antigens, disease manifestations and toxic reactions to drugs. Br. Med. J. 2, 1326–1328 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ju, L. Y. et al. A possible linkage of HLA-DRB haplotypes with tiopronin intolerance in rheumatoid arthritis. Clin. Exp. Rheumatol. 12, 249–254 (1994).

    CAS  PubMed  Google Scholar 

  56. Kalyoncu, A. F. et al. Analgesic intolerance with or without bronchial asthma: is there a marker? J. Investig. Allergol. Clin. Immunol. 13, 162–169 (2003).

    CAS  PubMed  Google Scholar 

  57. Molnar-Gabor, E., Endreffy, E. & Rozasi, A. HLA-DRB1, DQA1 and DQB1 genotypes in patients with nasal polyposis. Laryngoscope 110, 422–425 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Mullarkey, M. F., Thomas, P. S., Hansen, J. A., Webb, D. R. & Nisperos, B. Association of aspirin-sensitive asthma with HLA-DQw2. Am. Rev. Respir. Dis. 133, 261–263 (1986).

    CAS  PubMed  Google Scholar 

  59. Mastalerz, L., Setkowicz, M., Sanak, M. & Szczeklik, A. Hypersensitivity to aspirin: common ecosanoid alterations in urticaria and asthma. J. Allergy Clin. Immunol. 113, 771–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Kedda, M. A. et al. Characterization of two polymorphisms in the leukotriene C4 synthase gene in an Australian population of subjects with mild, moderate and severe asthma. J. Allergy Clin. Immunol. 113, 889–895 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Kowalski, M. L., Woszczek, G., Bienkiewicz, B. & Mis, M. Association of pyrazolone drug hypersensitivity with HLA-DQ and DR antigens. Clin. Exp. Allergy 28, 1153–1158 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Quiralte, J. et al. Association of HLA-DR11 with anaphylactoid reactions caused by nonsteroidal anti-inflammatory drugs. J. Allergy Clin. Immunol. 103, 685–989 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Romano, A. et al. Delayed hypersensitivity to aminopenicillins is related to major histocompatibility complex genes. Ann. Allergy Asthma Immunol. 80, 433–437 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Russek, G. I. et al. Hydralazine sensitivity: clinical features, autoantibody changes and HLA-DR phenotype. Quart. J. Med. 65, 845–852 (1987).

    Google Scholar 

  65. Chung, W. H. et al. Medical genetics: a marker for Stevens–Johnson syndrome. Nature 428, 486 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Mallal, S. et al. Association between presence of HLA-B*5701, HLA-DR7 and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359, 727–732 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Hetherington, S. et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359, 1121–1122 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Martin, A. M. et al. Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant. Proc. Natl Acad. Sci. USA 101, 4180–4185 (2004). Along with reference 66, this paper shows a strong correlation between HLA phenotype and the risk of hypersensitivity for abacvir.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Center for Drug Evaluation and Research, Food and Drug Administration. Guidance for Industry. General Considerations for the Clinical Evaluation of Drugs. HEW Publication No. (FDA) 77-3040 (1997).

  70. Lebovitz, H. E., Kreider, M., Freed, M. I. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 25, 815–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Pichler, W. J. & Tilch, J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy 59, 809–820 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Gaspard, I., Kerdine, S., Pallardy, M. & Lebrec, H. Quantitation of cytokine mRNA expression as an endpoint for prediction and diagnosis of xenobiotic-induced hypersensitivity reactions. Methods 19, 64–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Becquemont, L. Clinical relevance of pharmacogenetics. Drug Metab. Rev. 35, 277–285 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Roses, A. D. Pharmacogenetics and the practice of medicine. Nature 405, 857–865 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. ICH Topic E9: Statistical Principles for Clinical Trials (European Agency for the Evaluation of Medical Products, London, 1989).

  76. Park, B. K. & Pirmohamed, M. Toxicogenetics in drug development. Toxicol. Lett. 120, 281–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. & Stevanovic, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Linder, M. W., Prough, R. A. & Valdes, R. Jr. Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clin. Chem. 43, 254–266 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Board, P., Blackburn, A., Jermiin, L. S. & Chelvanayagam, G. Polymorphism of phase II enzymes: identification of new enzymes and polymorphic variants by database analysis. Toxicol. Lett. 102–103, 149–154 (1998).

    Article  PubMed  Google Scholar 

  80. Alhenc-Gelas, F. et al. Pharmacogénétique, étude du génome et développement des médicaments. Therapie 58, 275–282 (2003).

    Article  PubMed  Google Scholar 

  81. Choquet-Kastylevsky, G. & Descotes, J. Value of animal models for predicting hypersensitivity reactions to medicinal products. Toxicology 129, 27–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Weaver, J. L. et al. Detection of systemic hypersensitivity to drugs using standard guinea pig assays. Toxicology 193, 203–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Nierkens, S., Nieuwenhuijsen, L., Thomas, M. & Pieters, R. Evaluation of the use of reported antigens in an auricular lymph node assay to asses the immunosensitizing potential of drugs. Toxicol. Sci. 79, 90–97 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Warbrick, E. V., Dearman, R. J. & Kimber, I. Prediction of drug allergenicity: possible use of the local lymph node assay. Curr. Opin. Drug Discov. Dev. 4, 60–65 (2001).

    CAS  Google Scholar 

  85. Ravel, G., Christ, M., Horand, F. & Descotes, J. Cytokine release does not improve the sensitivity and specificity of the direct popliteal lymph node assay. Toxicology 200, 247–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Dean, J. H. et al. ICCVAN evaluation of the murine local lymph node assay. Conclusions and recommendations of an independent scientific peer review panel. Regul. Toxicol. Pharmacol. 34, 258–273 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Masson, M. J. & Uetrecht, J. P. Tolerance induced by low dose d-penicillamine in the brown Norway rat model of drug-induced autoimmunity is immune-mediated. Chem. Res. Toxicol. 17, 82–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Shenton, J. M., Teranishi, M., Abu-Asab, M. S., Yager, J. A. & Uetrecht, J. P. Characterization of a potential animal model of an idiosyncratic drug reaction: nevirapine-induced skin rash in the rat. Chem. Res. Toxicol. 16, 1078–1089 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Mestas, J. & Hughes, C. C. W. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Taneja, V. & David, C. S. HLA transgenic mice as humanized mouse models of disease and immunity. J. Clin. Invest. 101, 921–926 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nabozy, G. H. et al. HLA-DQ8 transgenic mice are highly susceptible to collagen induced arthritis. A novel model of human polyarthritis. J. Exp. Med. 183, 27–37 (1996).

    Article  Google Scholar 

  92. Kong, Y. M. et al. HLA-DRB1 polymorphism determines susceptibility to autoimmune thyroiditis in transgenic mice: definitive association with HLA-DRB1*0301 (DR3) gene. J. Exp. Med. 184, 1167–1172 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Wicker, L. S. et al. Naturally process T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for type I diabetes-associated MHC class II allele DRB1*0401. J. Clin. Invest. 98, 2597–2603 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ito, K. et al. HLA–DR4-IE chimeric class II transgenic, murine class II-deficient mice are susceptible to experimental allergic encephalomyelitis. J. Exp. Med. 183, 2635–2644 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Neeno, T. et al. HLA-DQ8 transgenic mice lacking endogenous class II molecules respond to house dust allergens. J. Immunol. 156, 3191–3195 (1997).

    Google Scholar 

  96. Dillon, S. R. et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nature Immunol. 5, 752–760 (2004).

    Article  CAS  Google Scholar 

  97. Blumel, J., Schimpl, A., Ulrich, P., Ahr, H. J. & Vohr, H. Primary immune response in skin and skin-associated lymphoid tissue of interleukin-4 transgenic mice. Eur. Cytokine Netw. 10, 515–524 (1999).

    CAS  PubMed  Google Scholar 

  98. Fallon, P. G., Emson, C. L., Smith, P. & McKenzie, A. N. IL-13 overexpression predisposes to anaphylaxis following antigen sensitization. J. Immunol. 166, 2712–2716 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Robles, M. S., Leonardo, E., Criado, L. M., Izquierdo, M. & Martinez, A. C. Exacerbated inflammatory responses in transgenic mice expressing an inhibitor of apoptosis protein (OpIAP). Cell Death Differ. 10, 1226–1233 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Mizumoto, N. et al. Enhanced contact hypersensitivity in human monocyte chemoattractant proptein-1 transgenic mouse. Immunobiology 204, 477–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Sato, T. et al. Consequences of OX40–OX40 ligand interactions in Langerhans cell function: enhance contact hypersensitivity responses in OX40L-transgenic mice. Eur. J. Immunol. 32, 3326–3335 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Seki, Y. et al. SOCS-3 regulates onset and maintenance of T(H)2-mediated allergic responses. Nature Med. 9, 1047–1054 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Voice, J. K. et al. Roles of vasoactive intestinal peptide (VIP) in the expression of different immune phenotypes by wild-type mice and T cell-targeted type II VIP receptor transgenic mice. J. Immunol. 170, 308–314 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Moser, R., Quesniaux, V. & Ryffle, B. Use of transgenic animals to investigate drug hypersensitivity. Toxicology 158, 75–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Bugelski, P. J. et al. Preclinical development of keliximab, a primatized anti-CD4 monoclonal antibody, in human CD4 transgenic mice: characterization of the model and safety studies. Hum. Exp. Toxicol. 19, 230–243 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Herzyk, D. J. et al. Immunomodulatory effects of anti-CD4 antibody in host resistance against infections and tumors in human CD4 transgenic mice. Infect. Immun. 69, 1032–1043 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Herzyk, D. J., Bugelski, P. J., Hart, T. K. & Wier, P. J. Practical aspects of including functional endpoints in developmental toxicity studies. Case study: immune function in HuCD4 transgenic mice exposed to anti-CD4 MAb in utero. Hum. Exp. Toxicol. 21, 507–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Josephy, P. D., Mannervik, B. & Ortiz de Montellano, P. Molecular Toxicology (Oxford Univ. Press, New York, Oxford, 1997).

    Google Scholar 

  109. Tanaka, E. Update: genetic polymorphisms of drug metabolizing enzymes in humans. J. Clin. Pharm. Ther. 24, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Matzinger, P. Tolerance, danger and the extended family. Ann. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  Google Scholar 

  111. Shi, Y., Zheng, W. & Rock, K. L. Cell injury releases endogenous adjuvants that stimulate cytotoxic T cell responses. Proc. Natl Acad. Sci. USA 97, 14590–14595 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Curtsinger, J. M. et al. Inflammatory cytokines provide a third signal for activation of naïve CD4+ and CD8+ T cells. J. Immunol. 162, 3256–3262 (1999).

    CAS  PubMed  Google Scholar 

  113. Pohl, L. R. Drug-induced allergic hepatitis. Sem. Liver Dis. 10, 305–315 (1990).

    Article  CAS  Google Scholar 

  114. Naisbitt, D. J. Drug hypersensitivity reactions in skin: understanding mechanisms and development of diagnostic and predictive tests. Toxicology 194, 179–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Chenoweth, C. E., Judd, W. J., Steiner, E. A. & Kauffman, C. A. Cefotetan-induced hemolytic anemia. Clin. Infect. Dis. 15, 863–865 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. Kunkeler, L., Nieboer, C. & Bruynzeel, D. P. Type III and type IV hypersensitivity reactions due to mitomycin C. Contact Dermatitis 42, 74–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Schnyder, B. et al. T-cell-mediated cytotoxicity against keratinocytes in sulfamethoxazole-induced skin reactions. Clin. Exp. Allergy 28, 11412–11417 (1998).

    Article  Google Scholar 

  118. Kalish, R. S., LaPorte, A., Wood, J. A. & Johnson, K. L. Sulfonamide-reactive lymphocytes detected at very low frequency in the peripheral blood of patients with drug-induced eruptions. J. Allergy Clin. Immunol. 94, 465–472 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Wälti, M., Neftel, K., Cohen, M., de Weck, A. L. & Perisic, M. Nachweis von arzneimittel-spezifischen IgE und IgG-antiköpern RIA: klinische bedeutung am bielspiel nomifensin (Alival). Schweizerische Medizinizche Wochenschrift 113, 1865–1867 (1983).

    Google Scholar 

  120. Clarke, J. B. et al. Detection of antidrug IgG antibodies in patients with adverse drug reactions. Int. Arch Allergy Appl. Immunol. 95, 369–375 (1991).

    Article  CAS  PubMed  Google Scholar 

  121. Kelkar, P. S. & Li, J. T. -C. Cephalosporin allergy. N. Engl. J. Med. 345, 804–809 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Verrotti, A., Trotta, D., Salladini, C. & Chiarelli, F. Anticonvulsant hypersensitivity syndrome in children. CNS Drugs 16, 197–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Levine, B. & Redmond, A. Immunochemical mechanisms of penicillin induced immune haemolytic anaemia in man. Int. Arch Allergy Appl. Immunol. 21, 594–606 (1967).

    Article  Google Scholar 

  124. Ray, D. C. & Drummond, G. B. Halothane hepatitis. Br. J. Anaesth. 67, 84–99 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Centocor Inc.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Gene

CYP1B1

CYP2A6

CYP2C9

CYP2C19

CYP2D6

CYP2E1

IFN-g

IL-2

IL-4

IL-5

IL-6

IL-9

IL-10

IL-13

IL-31

NAT2

SOCS3

OMIM

Hashimoto thyroiditis

rheumatoid arthritis

Stevens–Johnson syndrome

systemic lupus erythematosus

type I diabetes mellitus

FURTHER INFORMATION

The Louisiana State University Library Toxicology Internet Resources page

The Society of Toxicology

The United States Food and Drug Administration

Glossary

XENOBIOTIC

This term is used to differentiate chemical drugs from protein therapeutics. They are generally polycyclic hydrocarbons that contain one or more nitrogen atoms, either as part of one or more of their rings, or as part of their side chains.

HAPTEN

The designation given to a small molecule that is by itself non-immunogenic, but, when covalently linked to a protein, is able to elicit an immune response.

DRUG-METABOLIZING ENZYMES

Enzymes that use xenobiotics as substrates for a wide range of chemical reactions. These include oxidations, reductions and conjugations. Metabolic enzymes can both activate and detoxify xenobiotic drugs. In immune-mediated adverse drug effects, metabolic enzymes often allow xenobiotics to act as haptens.

CYTOCHROME P450

An important family of monooxygenases that mediate the metabolism of xenobiotics

MAJOR HISTOCOMPATIBILITY COMPLEX

(MHC). Originally named because they function as transplantation antigens, MHC molecules have a crucial role in antigen presentation, and serve as accessory binding proteins for both T-helper and T-killer cells.

ANTIGEN

An entity that is able to bind antibodies or T-cell receptors and elicit an immune response. Not all antigens are immunogens (that is, they are not all able to perform the de novo activation of an immune response). In immune-mediated adverse drug effects, although the parent xenobiotic drugs can function as antigens, they must often be covalently bound to proteins (see haptens) for full antigenicity.

CLONES

Exact copies of a single progenitor cell. The clonal expansion of T and B cells is crucial in mounting an immune response.

CYTOKINE

Protein hormones that act on cells of the immune system. Interleukins are cytokines that are released by leukocyte cells, which serve as crucial factors that drive and direct immune responses.

ANTIBODY SUBCLASS

Antibodies are produced as five subclasses: immunoglobulin M (IgM), IgG, IgE, IgD and IgA. These differ in their heavy chains and, therefore, in their Fc receptor interactions. In immune-mediated adverse drug effects, IgE is important in mediating allergic (type I) reactions, whereas IgM and IgG are important effectors in type II, III and IV reactions.

CHEMOKINES

Non-peptide and small peptide molecules that are able to mediate the migration of inflammatory cells from blood vessels to the site of inflammation.

T-HELPER CELL

The subclass of T lymphocytes that mediates the expansion and direction of immune responses.

KILLER CELL

The subclass of T lymphocytes that mediate damage to cells or tissues. Killer cells are important effector cells in delayed-type hypersensitivity reactions. They also act as suppressor cells to downregulate immune responses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugelski, P. Genetic aspects of immune-mediated adverse drug effects. Nat Rev Drug Discov 4, 59–69 (2005). https://doi.org/10.1038/nrd1605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1605

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing