Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

HDL as a target in the treatment of atherosclerotic cardiovascular disease

A Correction to this article was published on 01 August 2005

Key Points

  • Atherosclerosis is the leading cause of mortality in industrialized nations, despite substantial therapeutic progress resulting from the widespread use of statins.

  • Large-scale clinical trials using statins for both primary and secondary prevention have shown a marked reduction in coronary events, mainly owing to the lowering of plasma concentrations of low-density lipoprotein (LDL) cholesterol.

  • However, recent studies could herald the limits of statin monotherapy in inhibiting the development of established atherosclerotic disease, and there is therefore considerable interest in the therapeutic potential of targeting other lipid-related risk factors.

  • HDL-cholesterol levels are inversely correlated with the risk of coronary heart disease, and studies indicate a potential for HDL-raising therapies to reduce the risk of cardiovascular disease.

  • This article first overviews the mechanisms that are thought to be responsible for the protective effect of HDL cholesterol, and then discusses several new molecular targets and strategies that have emerged for increasing HDL levels, which is the next frontier in the prevention of atherosclerotic cardiovascular disease.

Abstract

Lipid abnormalities are among the key risk factors for cardiovascular disease. Indeed, lipid-modifying drugs — in particular, the statins, which primarily lower plasma levels of low-density lipoprotein (LDL) cholesterol — considerably reduce the risk of cardiovascular events, leading to their widespread use. Nevertheless, it seems that there might be limits to the degree of benefit that can be achieved by lowering LDL-cholesterol levels alone, which has led to increased interest in targeting other lipid-related risk factors for cardiovascular disease, such as low levels of high-density lipoprotein (HDL) cholesterol. In this article, we first consider the mechanisms that underlie the protective effect of HDL cholesterol, and then discuss several strategies that have recently emerged to increase levels of HDL cholesterol to treat cardiovascular disease, including nuclear receptor modulation, inhibition of cholesteryl ester transfer protein and infusion of apolipoprotein/phospholipid complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of cholesterol efflux from the arterial wall.
Figure 2: Overview of high-density lipoprotein metabolism and potential targets for therapeutic intervention.
Figure 3: Chemical structures of selected investigational agents that target high-density lipoprotein.

Similar content being viewed by others

References

  1. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 7–22 (2002).

  2. Sever, P. S. et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo–Scandinavian Cardiac Outcomes Trial — Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 361, 1149–1158 (2003).

    CAS  PubMed  Google Scholar 

  3. Waters, D. D. et al. Treating to New Targets (TNT) Study: does lowering low-density lipoprotein cholesterol levels below currently recommended guidelines yield incremental clinical benefit? Am. J. Cardiol. 93, 154–158 (2004).

    PubMed  Google Scholar 

  4. Cannon, C. P. et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N. Engl. J. Med. 350, 1495–1504 (2004).

    CAS  PubMed  Google Scholar 

  5. Rhoads, G. G., Gulbrandsen, C. L. & Kagan, A. Serum lipoproteins and coronary heart disease in a population study of Hawaii Japanese men. N. Engl. J. Med. 294, 293–198 (1976).

    CAS  PubMed  Google Scholar 

  6. Genest, J. J., McNamara, J. R., Salem, D. N. & Schaefer, E. J. Prevalence of risk factors in men with premature coronary artery disease. Am. J. Cardiol. 67, 1185–1189 (1991).

    CAS  PubMed  Google Scholar 

  7. Rubins, H. B. et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N. Engl. J. Med. 341, 410–418 (1999).

    CAS  PubMed  Google Scholar 

  8. Frick, M. H. et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N. Engl. J. Med. 317, 1237–1245 (1987). References 7 and 8 provide the best evidence so far for the clinical benefit of pharmacologically raising HDL levels.

    CAS  PubMed  Google Scholar 

  9. Assmann, G. & Schulte, H. The Prospective Cardiovascular Munster Study: prevalence and prognostic significance of hyperlipidemia in men with systemic hypertension. Am. J. Cardiol. 59, 9G–17G (1987).

    CAS  PubMed  Google Scholar 

  10. Assmann, G. & Schulte, H. Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Prospective Cardiovascular Munster study. Am. J. Cardiol. 70, 733–737 (1992).

    CAS  PubMed  Google Scholar 

  11. Gordon, T., Kannel, W. B., Castelli, W. P. & Dawber, T. R. Lipoproteins, cardiovascular disease, and death. The Framingham Study. Arch. Intern. Med. 141, 1128–1131 (1981).

    CAS  PubMed  Google Scholar 

  12. Williams, C. L. et al. Cardiovascular health in childhood: a statement for health professionals from the Committee on Atherosclerosis, Hypertension, and Obesity in the Young (AHOY) of the Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 106, 143–160 (2002).

    PubMed  Google Scholar 

  13. Bonow, R. O., Smaha, L. A., Smith, S. C., Mensah, G. A. & Lenfant, C. World Heart Day 2002: the international burden of cardiovascular disease: responding to the emerging global epidemic. Circulation 106, 1602–1605 (2002).

    PubMed  Google Scholar 

  14. Murray, C. J. & Lopez, A. D. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 349, 1269–1276 (1997).

    CAS  PubMed  Google Scholar 

  15. Brooks-Wilson, A. et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nature Genet. 22, 336–345 (1999).

    CAS  PubMed  Google Scholar 

  16. Bodzioch, M. et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nature Genet. 22, 347–351 (1999).

    CAS  PubMed  Google Scholar 

  17. Rust, S. et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nature Genet. 22, 352–355 (1999). References 15–17 appeared in the same issue of Nature Genetics and reported the identification of ABCA1 as the defective molecule in Tangier's disease. This finding represents one of the major breakthroughs in HDL research in recent years.

    CAS  PubMed  Google Scholar 

  18. Costet, P., Luo, Y., Wang, N. & Tall, A. R. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J. Biol. Chem. 275, 28240–28245 (2000).

    CAS  PubMed  Google Scholar 

  19. Sparrow, C. P. et al. A potent synthetic LXR agonist is more effective than cholesterol loading at inducing ABCA1 mRNA and stimulating cholesterol efflux. J. Biol. Chem. 277, 10021–10027 (2002).

    CAS  PubMed  Google Scholar 

  20. van Eck, M. et al. Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc. Natl Acad. Sci. USA 99, 6298–6303 (2002).

    CAS  PubMed  Google Scholar 

  21. Haghpassand, M., Bourassa, P. A., Francone, O. L. & Aiello, R. J. Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels. J. Clin. Invest. 108, 1315–1320 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Aiello, R. J. et al. Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA1 in macrophages. Arterioscler. Thromb. Vasc. Biol. 22, 630–637 (2002).

    CAS  PubMed  Google Scholar 

  23. Tan, J. H. et al. ABCA1 gene polymorphisms and their associations with coronary artery disease and plasma lipids in males from three ethnic populations in Singapore. Hum. Genet. 113, 106–117 (2003).

    CAS  PubMed  Google Scholar 

  24. Cohen, J. C. et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305, 869–872 (2004).

    CAS  PubMed  Google Scholar 

  25. Frikke-Schmidt, R., Nordestgaard, B. G., Jensen, G. B. & Tybjaerg-Hansen, A. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J. Clin. Invest. 114, 1343–1353 (2004). References 23–25 provide solid evidence that gene polymorphisms in ABCA1 influence HDL levels in the general population in different ethnic backgrounds, further underlining the importance of this transporter in HDL metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, N., Lan, D., Chen, W., Matsuura, F. & Tall, A. R. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl Acad. Sci. USA 101, 9774–9779 (2004). This study demonstrates that ABCG1 can mediate cholesterol efflux from macrophages to HDL. This might be an important mechanism for the anti-atherogenic effect of HDL and LXR activation.

    CAS  PubMed  Google Scholar 

  27. Zhang, W. et al. Inactivation of macrophage scavenger receptor class B type I promotes atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation 108, 2258–2263 (2003).

    CAS  PubMed  Google Scholar 

  28. Rinninger, F. et al. Selective uptake of high-density lipoprotein-associated cholesteryl esters by human hepatocytes in primary culture. Hepatology 19, 1100–1114 (1994).

    CAS  PubMed  Google Scholar 

  29. Cockerill, G. W., Rye, K. A., Gamble, J. R., Vadas, M. A. & Barter, P. J. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler. Thromb. Vasc. Biol. 15, 1987–1994 (1995).

    CAS  PubMed  Google Scholar 

  30. Baker, P. W., Rye, K. A., Gamble, J. R., Vadas, M. A. & Barter, P. J. Ability of reconstituted high density lipoproteins to inhibit cytokine-induced expression of vascular cell adhesion molecule-1 in human umbilical vein endothelial cells. J. Lipid Res. 40, 345–353 (1999).

    CAS  PubMed  Google Scholar 

  31. Nissen, S. E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290, 2292–2300 (2003). This study has attracted considerable attention as it is the first report of atherosclerosis regression after intracoronary apoA-I infusion in humans. Although there are several methodological problems associated with this trial, it shows promising results.

    CAS  PubMed  Google Scholar 

  32. Uittenbogaard, A., Shaul, P. W., Yuhanna, I. S., Blair, A. & Smart, E. J. High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J. Biol. Chem. 275, 11278–11283 (2000).

    CAS  PubMed  Google Scholar 

  33. Yuhanna, I. S. et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nature Med. 7, 853–857 (2001). The findings presented in this study provide an interesting new mechanism for the anti-atherosclerotic effects of HDL and have inspired intensive research on the role of HDL in endothelial function.

    CAS  PubMed  Google Scholar 

  34. Gong, M. et al. HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI-dependent manner. J. Clin. Invest. 111, 1579–1587 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nofer, J. R. et al. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Invest. 113, 569–581 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Lenten, B. J., Navab, M., Shih, D., Fogelman, A. M. & Lusis, A. J. The role of high-density lipoproteins in oxidation and inflammation. Trends Cardiovasc. Med. 11, 155–161 (2001).

    CAS  PubMed  Google Scholar 

  37. Nofer, J. R. et al. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis 161, 1–16 (2002).

    CAS  PubMed  Google Scholar 

  38. Vrecer, M., Turk, S., Drinovec, J. & Mrhar, A. Use of statins in primary and secondary prevention of coronary heart disease and ischemic stroke. Meta-analysis of randomized trials. Int J. Clin. Pharmacol. Ther. 41, 567–577 (2003).

    CAS  PubMed  Google Scholar 

  39. Kockx, M., Princen, H. M. & Kooistra, T. Fibrate-modulated expression of fibrinogen, plasminogen activator inhibitor-1 and apolipoprotein A-I in cultured cynomolgus monkey hepatocytes — role of the peroxisome proliferator-activated receptor-α. Thromb. Haemost. 80, 942–948 (1998).

    CAS  PubMed  Google Scholar 

  40. Neele, D. M., Kaptein, A., Huisman, H., de Wit, E. C. & Princen, H. M. No effect of fibrates on synthesis of apolipoprotein(a) in primary cultures of cynomolgus monkey and human hepatocytes: apolipoprotein A-I synthesis increased. Biochem. Biophys. Res. Commun. 244, 374–378 (1998).

    CAS  PubMed  Google Scholar 

  41. Mardones, P. et al. Fibrates downregulate hepatic scavenger receptor class B type I protein expression in mice. J. Biol. Chem. 278, 7884–7890 (2003).

    CAS  PubMed  Google Scholar 

  42. Robins, S. J. et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA 285, 1585–1591 (2001).

    CAS  PubMed  Google Scholar 

  43. Frick, M. H. et al. Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Lopid Coronary Angiography Trial (LOCAT) Study Group. Circulation 96, 2137–2143 (1997).

    CAS  PubMed  Google Scholar 

  44. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation 102, 21–27 (2000).

  45. Grundy, S. M., Mok, H. Y., Zech, L. & Berman, M. Influence of nicotinic acid on metabolism of cholesterol and triglycerides in man. J. Lipid Res. 22, 24–36 (1981).

    CAS  PubMed  Google Scholar 

  46. Wise, A. et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 278, 9869–9874 (2003). Although the HDL-raising effect of nicotinic acid has been known for decades, the G-protein-coupled receptors that mediate its effect have only recently been identified by this study.

    CAS  PubMed  Google Scholar 

  47. Rubic, T., Trottmann, M. & Lorenz, R. L. Stimulation of CD36 and the key effector of reverse cholesterol transport ATP-binding cassette A1 in monocytoid cells by niacin. Biochem. Pharmacol. 67, 411–419 (2004).

    CAS  PubMed  Google Scholar 

  48. Etchason, J. A. et al. Niacin-induced hepatitis: a potential side effect with low-dose time-release niacin. Mayo Clin. Proc. 66, 23–28 (1991).

    CAS  PubMed  Google Scholar 

  49. Clofibrate and niacin in coronary heart disease. JAMA 231, 360–381 (1975).

  50. Carlson, L. A. & Rosenhamer, G. Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med. Scand. 223, 405–418 (1988).

    CAS  PubMed  Google Scholar 

  51. Brown, P. J. et al. Identification of a subtype selective human PPARα agonist through parallel-array synthesis. Bioorg. Med. Chem. Lett. 11, 1225–1227 (2001).

    CAS  PubMed  Google Scholar 

  52. Miyachi, H. et al. Design, synthesis and evaluation of substituted phenylpropanoic acid derivatives as peroxisome proliferator-activated receptor (PPAR) activators: novel human PPARalpha-selective activators. Bioorg. Med. Chem. Lett. 12, 77–80 (2002).

    CAS  PubMed  Google Scholar 

  53. Xu, Y. et al. Design and synthesis of a potent and selective triazolone-based peroxisome proliferator-activated receptor α agonist. J. Med. Chem. 46, 5121–5124 (2003).

    CAS  PubMed  Google Scholar 

  54. Kuwabara, K. et al. A novel selective peroxisome proliferator-activated receptor α agonist, 2-methyl-c-5-[4-[5-methyl-2-(4-methylphenyl)-4-oxazolyl]butyl]-1,3-dioxane-r-2-carboxylic acid (NS-220), potently decreases plasma triglyceride and glucose levels and modifies lipoprotein profiles in KK-Ay mice. J. Pharmacol. Exp. Ther. 309, 970–977 (2004).

    CAS  PubMed  Google Scholar 

  55. Spiegelman, B. M. & Flier, J. S. Obesity and the regulation of energy balance. Cell 104, 531–543 (2001).

    CAS  PubMed  Google Scholar 

  56. Chinetti, G. et al. PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nature Med. 7, 53–58 (2001).

    CAS  PubMed  Google Scholar 

  57. Akiyama, T. E. et al. Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. Mol. Cell. Biol. 22, 2607–2619 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Claudel, T. et al. Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proc. Natl Acad. Sci. USA 98, 2610–2615 (2001).

    CAS  PubMed  Google Scholar 

  59. Bavirti, S., Ghanaat, F. & Tayek, J. A. Peroxisome proliferator-activated receptor-γ agonist increases both low-density lipoprotein cholesterol particle size and small high-density lipoprotein cholesterol in patients with type 2 diabetes independent of diabetic control. Endocr. Pract. 9, 487–493 (2003).

    PubMed  Google Scholar 

  60. Liang, C. P. et al. Increased CD36 protein as a response to defective insulin signaling in macrophages. J. Clin. Invest. 113, 764–773 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Vicent, D. et al. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J. Clin. Invest. 111, 1373–1380 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, A. C. et al. Differential inhibition of macrophage foam cell formation and atherosclerosis in mice by PPARα, β/δ and γ. J. Clin. Invest. 114, 1564–1576 (2004). An elegant study that provides important information on the differential role of the three PPARs on atherogenesis in a mouse model.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Berger, J. & Moller, D. E. The mechanisms of action of PPARs. Annu. Rev. Med. 53, 409–435 (2002).

    CAS  PubMed  Google Scholar 

  64. Moore, K. J., Fitzgerald, M. L. & Freeman, M. W. Peroxisome proliferator-activated receptors in macrophage biology: friend or foe? Curr. Opin. Lipidol. 12, 519–527 (2001).

    CAS  PubMed  Google Scholar 

  65. Pasceri, V., Wu, H. D., Willerson, J. T. & Yeh, E. T. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 101, 235–238 (2000).

    CAS  PubMed  Google Scholar 

  66. Lohray, B. B. et al. (-)3-[4-[2-(Phenoxazin-10-yl)ethoxy] phenyl]-2-ethoxypropanoic acid [(-)DRF 2725]: a dual PPAR agonist with potent antihyperglycemic and lipid modulating activity. J. Med. Chem. 44, 2675–2678 (2001).

    CAS  PubMed  Google Scholar 

  67. Saad, M. F. et al. Ragaglitazar improves glycemic control and lipid profile in type 2 diabetic subjects: a 12-week, double-blind, placebo-controlled dose-ranging study with an open pioglitazone arm. Diabetes Care 27, 1324–1329 (2004).

    CAS  PubMed  Google Scholar 

  68. Skrumsager, B. K. et al. Ragaglitazar: the pharmacokinetics, pharmacodynamics, and tolerability of a novel dual PPAR α and γ agonist in healthy subjects and patients with type 2 diabetes. J. Clin. Pharmacol. 43, 1244–1256 (2003).

    CAS  PubMed  Google Scholar 

  69. Chakrabarti, R. et al. Ragaglitazar: a novel PPAR α PPAR γ agonist with potent lipid-lowering and insulin-sensitizing efficacy in animal models. Br. J. Pharmacol. 140, 527–537 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Larsen, P. J. et al. Differential influences of peroxisome proliferator-activated receptors gamma and-alpha on food intake and energy homeostasis. Diabetes 52, 2249–2259 (2003).

    CAS  PubMed  Google Scholar 

  71. Ye, J. M. et al. PPARα/γ ragaglitazar eliminates fatty liver and enhances insulin action in fat-fed rats in the absence of hepatomegaly. Am. J. Physiol. Endocrinol. Metab. 284, E531–E540 (2003).

    CAS  PubMed  Google Scholar 

  72. Brand, C. L. et al. Dual PPARα/γ activation provides enhanced improvement of insulin sensitivity and glycemic control in ZDF rats. Am. J. Physiol. Endocrinol. Metab. 284, E841–E854 (2003).

    CAS  PubMed  Google Scholar 

  73. Peters, J. M. et al. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Mol. Cell. Biol. 20, 5119–5128 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Barak, Y. et al. Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer. Proc. Natl Acad. Sci. USA 99, 303–308 (2002).

    CAS  PubMed  Google Scholar 

  75. Wang, Y. X. et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).

    CAS  PubMed  Google Scholar 

  76. Oliver, W. R. et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc. Natl Acad. Sci. USA 98, 5306–5311 (2001).

    CAS  PubMed  Google Scholar 

  77. Vosper, H. et al. The peroxisome proliferator-activated receptor delta promotes lipid accumulation in human macrophages. J. Biol. Chem. 276, 44258–44265 (2001).

    CAS  PubMed  Google Scholar 

  78. Brown, M. L. et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 342, 448–451 (1989).

    CAS  PubMed  Google Scholar 

  79. Inazu, A. et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med. 323, 1234–1238 (1990).

    CAS  PubMed  Google Scholar 

  80. Bruce, C., Beamer, L. J. & Tall, A. R. The implications of the structure of the bactericidal/permeability-increasing protein on the lipid-transfer function of the cholesteryl ester transfer protein. Curr. Opin. Struct. Biol. 8, 426–434 (1998).

    CAS  PubMed  Google Scholar 

  81. Davidson, M. H. et al. The safety and immunogenicity of a CETP vaccine in healthy adults. Atherosclerosis 169, 113–120 (2003).

    CAS  PubMed  Google Scholar 

  82. Cho, K. H., Lee, J. Y., Choi, M. S., Bok, S. H. & Park, Y. B. Interaction of CETP inhibitory peptide and lipoprotein substrates in cholesteryl ester transfer assay: relationship between association properties and inhibitory activities. Lipids 37, 641–646 (2002).

    CAS  PubMed  Google Scholar 

  83. de Grooth, G. J. et al. Efficacy and safety of a novel cholesteryl ester transfer protein inhibitor, JTT-705, in humans: a randomized phase II dose-response study. Circulation 105, 2159–2165 (2002).

    CAS  PubMed  Google Scholar 

  84. Brousseau, M. E. et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N. Engl. J. Med. 350, 1505–1515 (2004). References 83 and 84 report the first results of two clinical trials on the safety and efficacy of CETP inhibitors in patients. Both studies observed a marked increase in HDL cholesterol and a decrease in apoB-containing lipoproteins.

    CAS  PubMed  Google Scholar 

  85. Jiang, X. C. et al. Downregulation of mRNA for the low density lipoprotein receptor in transgenic mice containing the gene for human cholesteryl ester transfer protein. Mechanism to explain accumulation of lipoprotein B particles. J. Biol. Chem. 268, 27406–27412 (1993).

    CAS  PubMed  Google Scholar 

  86. Curb, J. D. et al. A prospective study of HDL-C and cholesteryl ester transfer protein gene mutations and the risk of coronary heart disease in the elderly. J. Lipid Res. 45, 948–953 (2004).

    CAS  PubMed  Google Scholar 

  87. Okamoto, H. et al. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 406, 203–207 (2000).

    CAS  PubMed  Google Scholar 

  88. Morehouse, L. A., Sugarman, E. D., Bourassa, P. A. & A. J., M. HDL elevation by the CETP-inhibitor torcetrapib prevents aortic atherosclerosis in rabbits. Circulation (Suppl.) 110, III243 (2004).

    Google Scholar 

  89. Rittershaus, C. W. et al. Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20, 2106–2112 (2000).

    CAS  PubMed  Google Scholar 

  90. Schaefer, E. J. et al. Effects of atorvastatin on fasting and postprandial lipoprotein subclasses in coronary heart disease patients versus control subjects. Am. J. Cardiol. 90, 689–696 (2002).

    CAS  PubMed  Google Scholar 

  91. Gardner, C. D., Fortmann, S. P. & Krauss, R. M. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 276, 875–881 (1996).

    CAS  PubMed  Google Scholar 

  92. Lamarche, B. et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation 95, 69–75 (1997).

    CAS  PubMed  Google Scholar 

  93. Schaefer, E. J., Heaton, W. H., Wetzel, M. G. & Brewer, H. B. Plasma apolipoprotein A-1 absence associated with a marked reduction of high density lipoproteins and premature coronary artery disease. Arteriosclerosis 2, 16–26 (1982).

    CAS  PubMed  Google Scholar 

  94. Ng, D. S., Leiter, L. A., Vezina, C., Connelly, P. W. & Hegele, R. A. Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia. J. Clin. Invest. 93, 223–229 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rubin, E. M., Krauss, R. M., Spangler, E. A., Verstuyft, J. G. & Clift, S. M. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature 353, 265–267 (1991). This is the first study to describe the anti-atherogenic effect of apoA-I overexpression in a mouse model. This transgenic model shows one of the most robust anti-atherogenic effects observed in animal models of atherosclerosis so far.

    CAS  PubMed  Google Scholar 

  96. Plump, A. S., Scott, C. J. & Breslow, J. L. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc. Natl Acad. Sci. USA 91, 9607–9611 (1994).

    CAS  PubMed  Google Scholar 

  97. Paszty, C., Maeda, N., Verstuyft, J. & Rubin, E. M. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J. Clin. Invest. 94, 899–903 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, A. C., Lawn, R. M., Verstuyft, J. G. & Rubin, E. M. Human apolipoprotein A-I prevents atherosclerosis associated with apolipoprotein[a] in transgenic mice. J. Lipid Res. 35, 2263–2267 (1994).

    CAS  PubMed  Google Scholar 

  99. Benoit, P. et al. Somatic gene transfer of human ApoA-I inhibits atherosclerosis progression in mouse models. Circulation 99, 105–110 (1999).

    CAS  PubMed  Google Scholar 

  100. Duverger, N. et al. Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits. Circulation 94, 713–717 (1996).

    CAS  PubMed  Google Scholar 

  101. Miyazaki, A. et al. Intravenous injection of rabbit apolipoprotein A-I inhibits the progression of atherosclerosis in cholesterol-fed rabbits. Arterioscler. Thromb. Vasc. Biol. 15, 1882–1888 (1995).

    CAS  PubMed  Google Scholar 

  102. Eriksson, M., Carlson, L. A., Miettinen, T. A. & Angelin, B. Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-I. Potential reverse cholesterol transport in humans. Circulation 100, 594–598 (1999).

    CAS  PubMed  Google Scholar 

  103. Arakawa, R. & Yokoyama, S. Helical apolipoproteins stabilize ATP-binding cassette transporter A1 by protecting it from thiol protease-mediated degradation. J. Biol. Chem. 277, 22426–22429 (2002).

    CAS  PubMed  Google Scholar 

  104. Wang, N. et al. A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J. Clin. Invest. 111, 99–107 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rader, D. J. High-density lipoproteins as an emerging therapeutic target for atherosclerosis. JAMA 290, 2322–2324 (2003).

    CAS  PubMed  Google Scholar 

  106. Llodra, J. et al. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc. Natl Acad. Sci. USA 101, 11779–11784 (2004).

    CAS  PubMed  Google Scholar 

  107. Garber, D. W. et al. A new synthetic class A amphipathic peptide analogue protects mice from diet-induced atherosclerosis. J. Lipid Res. 42, 545–552 (2001).

    CAS  PubMed  Google Scholar 

  108. Navab, M. et al. Oral administration of an Apo A-I mimetic peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation 105, 290–292 (2002).

    CAS  PubMed  Google Scholar 

  109. Li, X. et al. Differential effects of apolipoprotein A-I-mimetic peptide on evolving and established atherosclerosis in apolipoprotein E-null mice. Circulation 110, 1701–1705 (2004).

    CAS  PubMed  Google Scholar 

  110. Jia, Z., Natarajan, P., Forte, T. M. & Bielicki, J. K. Thiol-bearing synthetic peptides retain the antioxidant activity of apolipoproteinA-I(Milano). Biochem. Biophys. Res. Commun. 297, 206–213 (2002).

    CAS  PubMed  Google Scholar 

  111. Bielicki, J. K. & Oda, M. N. Apolipoprotein A-I(Milano) and apolipoprotein A-I(Paris) exhibit an antioxidant activity distinct from that of wild-type apolipoprotein A-I. Biochemistry 41, 2089–2096 (2002).

    CAS  PubMed  Google Scholar 

  112. Van Lenten, B. J. et al. Influenza infection promotes macrophage traffic into arteries of mice that is prevented by D-4F, an apolipoprotein A-I mimetic peptide. Circulation 106, 1127–1132 (2002).

    CAS  PubMed  Google Scholar 

  113. Van Lenten, B. J. et al. D-4F, an apolipoprotein A-I mimetic peptide, inhibits the inflammatory response induced by influenza A infection of human type II pneumocytes. Circulation 110, 3252–8 (2004).

    CAS  PubMed  Google Scholar 

  114. Li, D. et al. Inhibition of arterial thrombus formation by ApoA1 Milano. Arterioscler. Thromb. Vasc. Biol. 19, 378–383 (1999).

    CAS  PubMed  Google Scholar 

  115. Repa, J. J. & Mangelsdorf, D. J. Nuclear receptor regulation of cholesterol and bile acid metabolism. Curr. Opin. Biotechnol. 10, 557–563 (1999).

    CAS  PubMed  Google Scholar 

  116. Chawla, A., Repa, J. J., Evans, R. M. & Mangelsdorf, D. J. Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866–1870 (2001).

    CAS  PubMed  Google Scholar 

  117. Annicotte, J. S., Schoonjans, K. & Auwerx, J. Expression of the liver X receptor α and β in embryonic and adult mice. Anat. Rec. 277A, 312–316 (2004).

    CAS  Google Scholar 

  118. Repa, J. J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 14, 2819–2830 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Collins, J. L. et al. Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J. Med. Chem. 45, 1963–1966 (2002).

    CAS  PubMed  Google Scholar 

  120. Lund, E. G., Menke, J. G. & Sparrow, C. P. Liver X receptor agonists as potential therapeutic agents for dyslipidemia and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23, 1169–1177 (2003). A concise review of the biology and potential role of LXR activators in the treatment of atherosclerosis, focusing on new strategies to circumvent the side effects associated with LXR agonists that are currently available.

    CAS  PubMed  Google Scholar 

  121. Joseph, S. B. et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl Acad. Sci. USA 99, 7604–7609 (2002).

    CAS  PubMed  Google Scholar 

  122. Tangirala, R. K. et al. Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proc. Natl Acad. Sci. USA 99, 11896–11901 (2002). References 121 and 122 are two elegant studies that first reported the anti-atherosclerotic effect of LXR activation in a mouse model, but that also discovered triglyceride elevation and fatty liver as side effects.

    CAS  PubMed  Google Scholar 

  123. Peet, D. J. et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell 93, 693–704 (1998).

    CAS  PubMed  Google Scholar 

  124. Alberti, S. et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRβ-deficient mice. J. Clin. Invest. 107, 565–573 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Thomas, J. et al. A chemical switch regulates fibrate specificity for peroxisome proliferator-activated receptor α (PPARα) versus liver X receptor. J. Biol. Chem. 278, 2403–2410 (2003).

    CAS  PubMed  Google Scholar 

  126. Shang, Y. & Brown, M. Molecular determinants for the tissue specificity of SERMs. Science 295, 2465–2468 (2002).

    CAS  PubMed  Google Scholar 

  127. Miao, B. et al. Raising HDL cholesterol without inducing hepatic steatosis and hypertriglyceridemia by a selective LXR modulator. J. Lipid Res. 45, 1410–1417 (2004).

    CAS  PubMed  Google Scholar 

  128. Costet, P. et al. Retinoic acid receptor-mediated induction of ABCA1 in macrophages. Mol. Cell. Biol. 23, 7756–7766 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. McCoy, M. G. et al. Characterization of the lipolytic activity of endothelial lipase. J. Lipid Res. 43, 921–929 (2002).

    CAS  PubMed  Google Scholar 

  130. Jaye, M. et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nature Genet. 21, 424–428 (1999).

    CAS  PubMed  Google Scholar 

  131. Jin, W., Millar, J. S., Broedl, U., Glick, J. M. & Rader, D. J. Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J. Clin. Invest. 111, 357–362 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Broedl, U. C. et al. Endothelial lipase promotes the catabolism of ApoB-containing lipoproteins. Circ. Res. 94, 1554–1561 (2004).

    CAS  PubMed  Google Scholar 

  133. Ishida, T. et al. Endothelial lipase modulates susceptibility to atherosclerosis in apolipoprotein-E deficient mice. J. Biol. Chem. 279, 45085–45092 (2004).

    CAS  PubMed  Google Scholar 

  134. Huang, Y. & Hall, I. H. Synthesis and pharmacological studies of 3-amino-2-methyl-1-phenyl-propanones as hypolipidemic agents in rodents. Arch. Pharm. (Weinheim) 329, 329–338 (1996).

    CAS  Google Scholar 

  135. Vieira-van Bruggen, D., Kalkman, I., van Gent, T., van Tol, A. & Jansen, H. Induction of adrenal scavenger receptor BI and increased high density lipoprotein-cholesteryl ether uptake by in vivo inhibition of hepatic lipase. J. Biol. Chem. 273, 32038–32041 (1998).

    CAS  PubMed  Google Scholar 

  136. Sinal, C. J. et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731–744 (2000).

    CAS  PubMed  Google Scholar 

  137. Bishop-Bailey, D., Walsh, D. T. & Warner, T. D. Expression and activation of the farnesoid X receptor in the vasculature. Proc. Natl Acad. Sci. USA 101, 3668–3673 (2004).

    CAS  PubMed  Google Scholar 

  138. Willson, T. M., Jones, S. A., Moore, J. T. & Kliewer, S. A. Chemical genomics: functional analysis of orphan nuclear receptors in the regulation of bile acid metabolism. Med. Res. Rev. 21, 513–522 (2001).

    CAS  PubMed  Google Scholar 

  139. Downes, M. et al. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol. Cell 11, 1079–1092 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Niesor, E. J., Flach, J., Lopes-Antoni, I., Perez, A. & Bentzen, C. L. The nuclear receptors FXR and LXRα: potential targets for the development of drugs affecting lipid metabolism and neoplastic diseases. Curr. Pharm. Des. 7, 231–259 (2001).

    CAS  PubMed  Google Scholar 

  141. Kozarsky, K. F. et al. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 387, 414–417 (1997).

    CAS  PubMed  Google Scholar 

  142. Ueda, Y. et al. Relationship between expression levels and atherogenesis in scavenger receptor class B, type I transgenics. J. Biol. Chem. 275, 20368–20373 (2000).

    CAS  PubMed  Google Scholar 

  143. Spady, D. K., Kearney, D. M. & Hobbs, H. H. Polyunsaturated fatty acids upregulate hepatic scavenger receptor B1 (SR-BI) expression and HDL cholesteryl ester uptake in the hamster. J. Lipid Res. 40, 1384–1394 (1999).

    CAS  PubMed  Google Scholar 

  144. Wang, N., Weng, W., Breslow, J. L. & Tall, A. R. Scavenger receptor BI (SR-BI) is upregulated in adrenal gland in apolipoprotein A-I and hepatic lipase knock-out mice as a response to depletion of cholesterol stores. In vivo evidence that SR-BI is a functional high density lipoprotein receptor under feedback control. J. Biol. Chem. 271, 21001–21004 (1996).

    CAS  PubMed  Google Scholar 

  145. Levkau, B. et al. High-density lipoprotein stimulates myo-cardial perfusion in vivo. Circulation 110, 3355–3359 (2004).

    CAS  PubMed  Google Scholar 

  146. Kimura, T. et al. High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. Arterioscler. Thromb. Vasc. Biol. 23, 1283–1288 (2003).

    CAS  PubMed  Google Scholar 

  147. Granata, R. et al. Dual effects of IGFBP-3 on endothelial cell apoptosis and survival: involvement of the sphingolipid signaling pathways. FASEB J. 18, 1456–1458 (2004).

    CAS  PubMed  Google Scholar 

  148. Cohen, J. C., Wang, Z., Grundy, S. M., Stoesz, M. R. & Guerra, R. Variation at the hepatic lipase and apolipoprotein AI/CIII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels. J. Clin. Invest. 94, 2377–2384 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Inazu, A. et al. Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high density lipoprotein cholesterol. J. Clin. Invest. 94, 1872–1882 (1994). References 148 and 149 have identified two major causes of genetic variation in HDL-plasma levels in human populations. Although the effect of genetic variation in the hepatic lipase gene and the APOA-I/C-III/A-IV locus on HDL was observed in Caucasians, the two common mutations in CETP seem to be widespread in the Asian population.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Vu-Dac, N. et al. The nuclear receptors peroxisome proliferator-activated receptor α and Rev-erbα mediate the species-specific regulation of apolipoprotein A-I expression by fibrates. J. Biol. Chem. 273, 25713–25720 (1998).

    CAS  PubMed  Google Scholar 

  151. Berthou, L. et al. Opposite regulation of human versus mouse apolipoprotein A-I by fibrates in human apolipoprotein A-I transgenic mice. J. Clin. Invest. 97, 2408–2416 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kennedy, M. A. et al. Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J. Biol. Chem. 276, 39438–39447 (2001).

    CAS  PubMed  Google Scholar 

  153. Williams, K. J., Tall, A. R., Bisgaier, C. & Brocia, R. Phospholipid liposomes acquire apolipoprotein E in atherogenic plasma and block cholesterol loading of cultured macrophages. J. Clin. Invest. 79, 1466–1472 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrick Linsel-Nitschke or Alan R. Tall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

ABCA1

ABCG1

ABCG4

ABCG5

ABCG8

apoA-I

apoB

apoE

CETP

eNOS

FXR

LCAT

LIPC

LIPG

LPL

PLTP

PPARα

PPARγ

PPARδ

RARγ

SR-BI

SRC1

TNF

OMIM

familial hypoalphalipoproteinaemia

Tangier's disease

type II diabetes

Glossary

ATHEROSCLEROSIS

Atherosclerosis is a systemic disease that is characterized by the accumulation of lipid-rich plaques within the walls of large arteries. Major clinical manifestations of atherosclerosis include myocardial infarction (heart attack), stroke and peripheral vascular disease.

METABOLIC SYNDROME

A common condition associated with increased risk for cardiovascular disease. The diagnosis requires three or more of the following symptoms: central obesity; high blood pressure; low plasma-HDL; high triglycerides; or elevated fasting blood glucose.

MACROPHAGE

A type of white blood cell that is specialized for the uptake of material by phagocytosis.

SINGLE NUCLEOTIDE POLYMORPHISM

(SNP). A specific location in a DNA sequence at which different people can have a different DNA base. Differences in a single base could change the protein sequence, leading to disease, or have no known consequences.

INTRACORONARY VASCULAR ULTRASOUND

(IVUS). Procedure in which a miniature ultrasound transducer on the tip of a coronary catheter is used to produce detailed images of the interior wall of coronary arteries.

CHOLELITHIASIS

Presence of gallstones in the gallbladder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linsel-Nitschke, P., Tall, A. HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat Rev Drug Discov 4, 193–205 (2005). https://doi.org/10.1038/nrd1658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1658

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing