Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transient receptor potential channels: targeting pain at the source

Key Points

  • The detection of noxious stimuli by nociceptors is mediated by high-threshold transducers expressed on their peripheral terminal membranes. These transducers are receptor/ion channels that convert thermal, mechanical and chemical stimuli into ion fluxes that excite the neuron to produce a sensory inflow.

  • Transient receptor potential (TRP) channels are the most prominent family of nociceptive ion-channel transducer proteins and encode thermal and chemical stimuli.

  • Among the TRP channels expressed by nociceptors, TRPV1 and TRPA1 have been the most extensively investigated, and represent validated targets for the development of novel analgesics.

  • In addition to detecting noxious stimuli, the density, threshold and kinetics of TRPV1 and TRPA1 are modulated by inflammatory mediators, and in this way sensitize nociceptors to increase pain sensitivity after tissue damage or on exposure to inflammation.

  • TRPV1 and TRPA1 are also expressed on the central terminals of sensory neurons where they seem to act as synaptic modulators. Antagonists acting at these two channels are promising candidates as analgesics by virtue of blocking the activation of the channels in response to noxious stimuli or inflammation.

  • TRP nociceptive transducer proteins may have adaptive actions beyond simply detecting noxious stimuli, including body temperature control, synaptic plasticity, and respiratory and cardiovascular function, which may produce adverse effects when blocked.

  • TRP channel agonists can also produce analgesia by either desensitizing the receptors or, at high doses, ablating them.

  • TRP channels can be used as a drug delivery system to target small cationic drugs selectively into nociceptors.

  • Overall, targeting nociceptive TRP channels, where the pain-pathway begins, represents a promising opportunity for the development of novel analgesics.

Abstract

Pain results from the complex processing of neural signals at different levels of the central nervous system, with each signal potentially offering multiple opportunities for pharmacological intervention. A logical strategy for developing novel analgesics is to target the beginning of the pain pathway, and aim potential treatments directly at the nociceptors — the high-threshold primary sensory neurons that detect noxious stimuli. The largest group of receptors that function as noxious stimuli detectors in nociceptors is the transient receptor potential (TRP) channel family. This Review highlights evidence supporting particular TRP channels as targets for analgesics, indicates the likely efficacy profiles of TRP-channel-acting drugs, and discusses the development pathways needed to test candidates as analgesics in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of major pain syndromes.
Figure 2: Representation of the roles of TRP channels in the peripheral and central terminals of nociceptor neurons.
Figure 3: Changes in TRP channels produced by inflammation.
Figure 4: TRP channel antagonists and agonists as analgesics.
Figure 5: TRP drugs currently under development as analgesics.

Similar content being viewed by others

References

  1. Woolf, C. J. & Ma, Q. Nociceptors-noxious stimulus detectors. Neuron 55, 353–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Hucho, T. & Levine, J. D. Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55, 365–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Baron, R. Mechanisms of disease: neuropathic pain — a clinical perspective. Nature Clin. Pract. Neurol. 2, 95–106 (2006).

    Article  Google Scholar 

  4. Finnegan, T. F., Chen, S. R. & Pan, H. L. Effect of the μ opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala. J. Pharmacol. Exp. Ther. 312, 441–448 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Mico, J. A., Ardid, D., Berrocoso, E. & Eschalier, A. Antidepressants and pain. Trends Pharmacol. Sci. 27, 348–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Wood, J. N. Ion channels in analgesia research. Handb. Exp. Pharmacol. 177, 329–358 (2007).

    Article  CAS  Google Scholar 

  7. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Dhaka, A., Viswanath, V. & Patapoutian, A. TRP ion channels and temperature sensation. Annu. Rev. Neurosci. 29, 135–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Montell, C. & Rubin, G. M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2, 1313–1323 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997). The first cloning of a nociceptive TRP ion channel, TRPV1, and the demonstration that it is both the capsaicin receptor and a noxious heat detector.

    Article  CAS  PubMed  Google Scholar 

  12. Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J. & Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Peier, A. M. et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046–2049 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Smith, G. D. et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Xu, H. et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Guler, A. D. et al. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22, 6408–6414 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Watanabe, H. et al. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J. Biol. Chem. 277, 47044–47051 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002). By annotating novel TRP ion channels within the genome and determining their expression and function, the authors cloned TRPM8, the first channel shown to be activated by cool temperatures (15–25 °C) and menthol.

    Article  CAS  PubMed  Google Scholar 

  20. Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Clapham, D. E., Runnels, L. W. & Strubing, C. The TRP ion channel family. Nature Rev. Neurosci. 2, 387–396 (2001).

    Article  CAS  Google Scholar 

  22. Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Togashi, K. et al. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J. 25, 1804–1815 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Davis, J. B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Philip, G., Baroody, F. M., Proud, D., Naclerio, R. M. & Togias, A. G. The human nasal response to capsaicin. J. Allergy Clin. Immunol. 94, 1035–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Green, B. G. & Shaffer, G. S. The sensory response to capsaicin during repeated topical exposures: differential effects on sensations of itching and pungency. Pain 53, 323–334 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Siemens, J. et al. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 444, 208–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Macpherson, L. J. et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Bautista, D. M. et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl Acad. Sci. USA 102, 12248–12252 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jordt, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Macpherson, L. J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007). This paper shows that TRPA1 is activated through covalent cysteine modification, and that it is the reactivity of these pungent chemicals (not necessarily their shape) that leads to TRPA1 activation.

    Article  CAS  PubMed  Google Scholar 

  34. Hinman, A., Chuang, H. H., Bautista, D. M. & Julius, D. TRP channel activation by reversible covalent modification. Proc. Natl Acad. Sci. USA 103, 19564–19568 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bang, S., Kim, K. Y., Yoo, S., Kim, Y. G. & Hwang, S. W. Transient receptor potential A1 mediates acetaldehyde-evoked pain sensation. Eur. J. Neurosci. 26, 2516–2523 (2007).

    Article  PubMed  Google Scholar 

  36. Trevisani, M. et al. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc. Natl Acad. Sci. USA 104, 13519–13524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McNamara, C. R. et al. TRPA1 mediates formalin-induced pain. Proc. Natl Acad. Sci. USA 104, 13525–13530 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Macpherson, L. J. et al. An ion channel essential for sensing chemical damage. J. Neurosci. 27, 11412–11415 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sawada, Y., Hosokawa, H., Matsumura, K. & Kobayashi, S. Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur. J. Neurosci. 27, 1131–1142 (2008).

    Article  PubMed  Google Scholar 

  40. Takahashi, N. et al. Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels (Austin) 2, 287–298 (2008).

    Article  Google Scholar 

  41. Yoshida, T. et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nature Chem. Biol. 2, 596–607 (2006).

    Article  CAS  Google Scholar 

  42. Uchida, K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog. Lipid Res. 42, 318–343 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, J. et al. Molecular determinants of species-specific activation or blockade of TRPA1 channels. J. Neurosci. 28, 5063–5071 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Conaway, C. C., Krzeminski, J., Amin, S. & Chung, F. L. Decomposition rates of isothiocyanate conjugates determine their activity as inhibitors of cytochrome p450 enzymes. Chem. Res. Toxicol. 14, 1170–1176 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Salazar, H. et al. A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nature Neurosci. 11, 255–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Zurborg, S., Yurgionas, B., Jira, J. A., Caspani, O. & Heppenstall, P. A. Direct activation of the ion channel TRPA1 by Ca2+. Nature Neurosci. 10, 277–279 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Sawada, Y., Hosokawa, H., Hori, A., Matsumura, K. & Kobayashi, S. Cold sensitivity of recombinant TRPA1 channels. Brain Res. 1160, 39–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Doerner, J. F., Gisselmann, G., Hatt, H. & Wetzel, C. H. Transient receptor potential channel A1 is directly gated by calcium ions. J. Biol. Chem. 282, 13180–13189 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Akopian, A. N., Ruparel, N. B., Jeske, N. A. & Hargreaves, K. M. TRPA1 desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J. Physiol. 583, 175–193 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Takashima, Y. et al. Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J. Neurosci. 27, 14147–14157 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chung, M. K., Lee, H., Mizuno, A., Suzuki, M. & Caterina, M. J. TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J. Biol. Chem. 279, 21569–21575 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Suzuki, M., Watanabe, Y., Oyama, Y., Mizuno, A., Kusano, E., Hirao, A., Ookawara S. Localization of mechanosensitive channel TRPV4 in mouse skin. Neurosci. Lett. 353, 189–192 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Chung, M. K., Lee, H. & Caterina, M. J. Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J. Biol. Chem. 278, 32037–32046 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Hoffmann, T., Sauer, S. K., Horch, R. E. & Reeh, P. W. Sensory transduction in peripheral nerve axons elicits ectopic action potentials. J. Neurosci. 28, 6281–6284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hwang, S. J., Burette, A., Rustioni, A. & Valtschanoff, J. G. Vanilloid receptor VR1-positive primary afferents are glutamatergic and contact spinal neurons that co-express neurokinin receptor NK1 and glutamate receptors. J. Neurocytol. 33, 321–329 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Yang, K., Kumamoto, E., Furue, H. & Yoshimura, M. Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord. Neurosci. Lett. 255, 135–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Kosugi, M., Nakatsuka, T., Fujita, T., Kuroda, Y. & Kumamoto, E. Activation of TRPA1 channel facilitates excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord. J. Neurosci. 27, 4443–4451 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ferrini, F., Salio, C., Vergnano, A. M. & Merighi, A. Vanilloid receptor-1 (TRPV1)-dependent activation of inhibitory neurotransmission in spinal substantia gelatinosa neurons of mouse. Pain 129, 195–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Fischbach, T., Greffrath, W., Nawrath, H. & Treede, R. D. Effects of anandamide and noxious heat on intracellular calcium concentration in nociceptive DRG neurons of rats. J. Neurophysiol. 98, 929–938 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, S. et al. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131, 1241–1251 (2008).

    Article  PubMed  Google Scholar 

  62. Wang, H. et al. Bradykinin produces pain hypersensitivity by potentiating spinal cord glutamatergic synaptic transmission. J. Neurosci. 25, 7986–7992 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gibson, H. E., Edwards, J. G., Page, R. S., Van Hook, M. J. & Kauer, J. A. TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron 57, 746–759 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Starowicz, K. et al. Tonic endovanilloid facilitation of glutamate release in brainstem descending antinociceptive pathways. J. Neurosci. 27, 13739–13749 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ji, R. R., Samad, T. A., Jin, S. X., Schmoll, R. & Woolf, C. J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36, 57–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, X., Huang, J. & McNaughton, P. A. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 24, 4211–4223 (2005). Documentation of the changes in TRPV1 that contribute to peripheral sensitization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu, W. & Oxford, G. S. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1. Mol. Cell Neurosci. 34, 689–700 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mandadi, S. et al. Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCɛ-mediated phosphorylation at S800. Pain 123, 106–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Lukacs, V. et al. Dual regulation of TRPV1 by phosphoinositides. J. Neurosci. 27, 7070–7080 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kawamata, T. et al. Contribution of transient receptor potential vanilloid subfamily 1 to endothelin-1-induced thermal hyperalgesia. Neuroscience 154, 1067–1076 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Facer, P. et al. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol. 7, 11 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Lauria, G. et al. Expression of capsaicin receptor immunoreactivity in human peripheral nervous system and in painful neuropathies. J. Peripher. Nerv. Syst. 11, 262–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Culshaw, A. J. et al. Identification and biological characterization of 6-aryl-7-isopropylquinazolinones as novel TRPV1 antagonists that are effective in models of chronic pain. J. Med. Chem. 49, 471–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Dai, Y. et al. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J. Clin. Invest. 117, 1979–1987 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Diogenes, A., Akopian, A. N. & Hargreaves, K. M. NGF up-regulates TRPA1: implications for orofacial pain. J. Dent. Res. 86, 550–555 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Obata, K. et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest. 115, 2393–2401 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grant, A. D. et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J. Physiol. 578, 715–733 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Alessandri-Haber, N. et al. Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39, 497–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Xiao, R. et al. Calcium plays a central role in the sensitization of TRPV3 channel to repetitive stimulations. J. Biol. Chem. 283, 6162–6174 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Xu, H., Delling, M., Jun, J. C. & Clapham, D. E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neurosci. 9, 628–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, B. & Qin, F. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 25, 1674–1681 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Premkumar, L. S., Raisinghani, M., Pingle, S. C., Long, C. & Pimentel, F. Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J. Neurosci. 25, 11322–11329 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rohacs, T., Lopes, C. M., Michailidis, I. & Logothetis, D. E. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nature Neurosci. 8, 626–634 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Andersson, D. A., Nash, M. & Bevan, S. Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids. J. Neurosci. 27, 3347–3355 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vanden Abeele, F. et al. Ca2+-independent phospholipase A2-dependent gating of TRPM8 by lysophospholipids. J. Biol. Chem. 281, 40174–40182 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Barton, N. J. et al. Attenuation of experimental arthritis in TRPV1R knockout mice. Exp. Mol. Pathol. 81, 166–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Birder, L. A. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature Neurosci. 5, 856–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Iida, T., Shimizu, I., Nealen, M. L., Campbell, A. & Caterina, M. Attenuated fever response in mice lacking TRPV1. Neurosci. Lett. 378, 28–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Ciura, S. & Bourque, C. W. Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J. Neurosci. 26, 9069–9075 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Marsch, R. et al. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J. Neurosci. 27, 832–839 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Razavi, R. et al. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes. Cell 127, 1123–1135 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Steiner, A. A. et al. Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J. Neurosci. 27, 7459–7468 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gavva, N. R. et al. The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J. Neurosci. 27, 3366–3374 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Szallasi, A., Cortright, D. N., Blum, C. A. & Eid, S. R. The vanilloid receptor TRPV1, 10 years from channel cloning to antagonist proof-of-concept. Nature Rev. Drug Discov. 6, 357–372 (2007).

    Article  CAS  Google Scholar 

  95. Kanai, Y., Hara, T. & Imai, A. Participation of the spinal TRPV1 receptors in formalin-evoked pain transduction: a study using a selective TRPV1 antagonist, iodo-resiniferatoxin. J. Pharm. Pharmacol. 58, 489–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Lappin, S. C., Randall, A. D., Gunthorpe, M. J. & Morisset, V. TRPV1 antagonist, SB-366791, inhibits glutamatergic synaptic transmission in rat spinal dorsal horn following peripheral inflammation. Eur. J. Pharmacol. 540, 73–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Cui, M. et al. TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J. Neurosci. 26, 9385–9393 (2006). First evidence that TRP receptor antagonists may act on the central terminals of nociceptors to produce analgesia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kwan, K. Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006). Demonstration that TRPA1 is a receptor-operated channel and that this contributes to the detection of inflammation.

    Article  CAS  PubMed  Google Scholar 

  100. Petrus, M. et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain 3, 40 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Bessac, B. F. et al. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J. Clin. Invest. 118, 1899–1910 (2008). By virtue of its capacity to respond to oxidants and other irritants TRPA1 may have a major role in respiratory diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Colburn, R. W. et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron 54, 379–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Bautista, D. M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448, 204–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Xing, H., Chen, M., Ling, J., Tan, W. & Gu, J. G. TRPM8 mechanism of cold allodynia after chronic nerve injury. J. Neurosci. 27, 13680–13690 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Proudfoot, C. J. et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol. 16, 1591–1605 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Chung, M. K. & Caterina, M. J. TRP channel knockout mice lose their cool. Neuron 54, 345–347 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Dhaka, A., Earley, T. J., Watson, J. & Patapoutian, A. Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J. Neurosci. 28, 566–575 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Alessandri-Haber, N., Dina, O. A., Joseph, E. K., Reichling, D. & Levine, J. D. A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J. Neurosci. 26, 3864–3874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen, X., Alessandri-Haber, N. & Levine, J. D. Marked attenuation of inflammatory mediator-induced C-fiber sensitization for mechanical and hypotonic stimuli in TRPV4−/− mice. Mol. Pain 3, 31 (2007).

    PubMed  PubMed Central  Google Scholar 

  110. Lee, H., Iida, T., Mizuno, A., Suzuki, M. & Caterina, M. J. Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J. Neurosci. 25, 1304–1310 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liedtke, W. & Friedman, J. M. Abnormal osmotic regulation in Trpv4−/− mice. Proc. Natl Acad. Sci. USA 100, 13698–13703 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mizuno, A., Matsumoto, N., Imai, M. & Suzuki, M. Impaired osmotic sensation in mice lacking TRPV4. Am. J. Physiol. Cell Physiol. 285, C96–C101 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Shibasaki, K., Suzuki, M., Mizuno, A. & Tominaga, M. Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J. Neurosci. 27, 1566–1575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Suzuki, M., Mizuno, A., Kodaira, K. & Imai, M. Impaired pressure sensation with mice lacking TRPV4. J. Biol. Chem. 278, 22664–22668 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Todaka, H., Taniguchi, J., Satoh, J., Mizuno, A. & Suzuki, M. Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J. Biol. Chem. 279, 35133–35138 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Brierley, S. M. et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134, 2059–2069 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Yin, J. et al. Negative-feedback loop attenuates hydrostatic lung edema via a cGMP-dependent regulation of transient receptor potential vanilloid 4. Circ. Res. 102, 966–974 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Zimmermann, M. Pathobiology of neuropathic pain. Eur. J. Pharmacol. 429, 23–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Leinninger, G. M., Edwards, J. L., Lipshaw, M. J. & Feldman, E. L. Mechanisms of disease: mitochondria as new therapeutic targets in diabetic neuropathy. Nature Clin. Pract. Neurol. 2, 620–628 (2006).

    Article  CAS  Google Scholar 

  121. Pop-Busui, R., Sima, A. & Stevens, M. Diabetic neuropathy and oxidative stress. Diabetes Metab. Res. Rev. 22, 257–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, L. & Barritt, G. J. TRPM8 in prostate cancer cells: a potential diagnostic and prognostic marker with a secretory function? Endocr. Relat. Cancer 13, 27–38 (2006).

    Article  PubMed  CAS  Google Scholar 

  123. Novakova-Tousova, K. et al. Functional changes in the vanilloid receptor subtype 1 channel during and after acute desensitization. Neuroscience 149, 144–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Mason, L., Moore, R. A., Derry, S., Edwards, J. E. & McQuay, H. J. Systematic review of topical capsaicin for the treatment of chronic pain. BMJ 328, 991 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Amantini, C. et al. Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J. Neurochem. 102, 977–990 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Athanasiou, A. et al. Cannabinoid receptor agonists are mitochondrial inhibitors: a unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. Biochem. Biophys. Res. Commun. 364, 131–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Simpson, D. M., Brown, S. & Tobias, J. Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy. Neurology 70, 2305–2313 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Nolano, M. et al. Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation. Pain 81, 135–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Karai, L. et al. Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J. Clin. Invest. 113, 1344–1352 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Meyers, J. R. et al. Lighting up the senses: FM1–43 loading of sensory cells through nonselective ion channels. J. Neurosci. 23, 4054–4065 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chung, M. K., Guler, A. D. & Caterina, M. J. TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nature Neurosci. 11, 555–564 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Binshtok, A. M., Bean, B. P. & Woolf, C. J. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature 449, 607–610 (2007). Demonstrates the use of TRPV1 as a delivery system to target a normally ineffective cationic sodium channel into nociceptors.

    Article  CAS  PubMed  Google Scholar 

  133. Chizh, B. A. et al. The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain 132, 132–141 (2007). Preclinical proof-of-concept study in human volunteers of a TRPV1 antagonist.

    Article  CAS  PubMed  Google Scholar 

  134. Arendt-Nielsen, L., Curatolo, M. & Drewes, A. Human experimental pain models in drug development: translational pain research. Curr. Opin. Investig. Drugs 8, 41–53 (2007).

    CAS  PubMed  Google Scholar 

  135. Ravert, H. T., Bencherif, B., Madar, I. & Frost, J. J. PET imaging of opioid receptors in pain: progress and new directions. Curr. Pharm. Des 10, 759–768 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Schweinhardt, P., Bountra, C. & Tracey, I. Pharmacological FMRI in the development of new analgesic compounds. NMR Biomed. 19, 702–711 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Rukwied, R. et al. Potentiation of nociceptive responses to low pH injections in humans by prostaglandin E2. J. Pain 8, 443–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Wang, D. H. The vanilloid receptor and hypertension. Acta Pharmacol. Sin. 26, 286–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Gavva, N. R. et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 136, 202–210 (2008). TRPV1-antagonist-induced hyperthermia is a potential important side effect as revealed in this Phase II study.

    Article  CAS  PubMed  Google Scholar 

  140. Sharif-Naeini, R., Ciura, S. & Bourque, C. W. TRPV1 gene required for thermosensory transduction and anticipatory secretion from vasopressin neurons during hyperthermia. Neuron 58, 179–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Lehto, S. et al. Antihyperalgesic effects of AMG8562, a novel vanilloid receptor TRPV1 modulator that does not cause hyperthermia in rats. J. Pharmacol. Exp. Ther. 17 Apr 2008 (doi:10.1124/jpet.107.132233).

    Article  CAS  Google Scholar 

  142. Zambrowicz, B. P. & Sands, A. T. Knockouts model the 100 best-selling drugs — will they model the next 100? Nature Rev. Drug Discov. 2, 38–51 (2003).

    Article  CAS  Google Scholar 

  143. Hatcher, J. P. & Chessell, I. P. Transgenic models of pain: a brief review. Curr. Opin. Investig. Drugs 7, 647–652 (2006).

    CAS  PubMed  Google Scholar 

  144. Seong, E., Saunders, T. L., Stewart, C. L. & Burmeister, M. To knockout in 129 or in C57BL/6: that is the question. Trends Genet. 20, 59–62 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Keskintepe, L., Norris, K., Pacholczyk, G., Dederscheck, S. M. & Eroglu, A. Derivation and comparison of C57BL/6 embryonic stem cells to a widely used 129 embryonic stem cell line. Transgenic Res. 16, 751–758 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Zhu, W. Xu, P., Cuascut, F. X., Hall, A. K. & Oxford, G. S. Activin acutely sensitizes dorsal root ganglion neurons and induces hyperalgesia via PKC-mediated potentiation of transient receptor potential vanilloid 1. J. Neurosci. 27, 13770–13780 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang, X., Miyares, R. L. & Ahern, G. P. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1. J. Physiol. 564, 541–547 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pogatzki-Zahn, E. M., Shimizu, I., Caterina, M. & Raja, S. N. Heat hyperalgesia after incision requires TRPV1 and is distinct from pure inflammatory pain. Pain 115, 296–307 (2005).

    Article  PubMed  Google Scholar 

  149. Keeble, J. et al. Involvement of transient receptor potential vanilloid 1 in the vascular and hyperalgesic components of joint inflammation. Arthritis Rheum. 52, 3248–3256 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Bolcskei, K. et al. Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice. Pain 117, 368–376 (2005).

    Article  PubMed  CAS  Google Scholar 

  151. Jin, X. & Gereau, R. W.t. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J. Neurosci. 26, 246–255 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pabbidi, R. M. et al. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol. Pain 4, 9 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Wang, Z. Y., Wang, P., Merriam, F. V. & Bjorling, D. E. Lack of TRPV1 inhibits cystitis-induced increased mechanical sensitivity in mice. Pain 139, 158–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Alessandri-Haber, N., Dina, O. A., Joseph, E. K. & Reichling, D. B. & Levine, J. D. Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J. Neurosci. 28, 1046–1057 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Alessandri-Haber, N., Joseph, E., Dina, O. A., Liedtke, W. & Levine, J. D. TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118, 70–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Matta, J. A. et al. General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc. Natl Acad. Sci. USA 105, 8784–8789 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Escalera, J., von Hehn, C. A., Bessac, B. F., Sivula, M. & Jordt, S. E. TRPA1 mediates the noxious effects of natural sesquiterpene deterrents. J. Biol. Chem. 283, 24136–24144 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cruz-Orengo, L. et al. Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1. Mol. Pain 4, 30 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Andersson, D. A., Gentry, C., Moss, S. & Bevan, S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci. 28, 2485–2494 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Materazzi, S. et al. Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1. Proc. Natl Acad. Sci. USA 105, 12045–12050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Moore, R. A., Derry, S. & McQuay, H. J. Topical agents in the treatment of rheumatic pain. Rheum. Dis. Clin. North Am. 34, 415–432 (2008).

    Article  PubMed  Google Scholar 

  162. Cruz, F. & Dinis, P. Resiniferatoxin and botulinum toxin type A for treatment of lower urinary tract symptoms. Neurourol. Urodyn. 26, 920–927 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Watson, C. P. et al. A randomized vehicle-controlled trial of topical capsaicin in the treatment of postherpetic neuralgia. Clin. Ther. 15, 510–526 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. E. Kim for help putting together boxes 2 and 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford J. Woolf.

Ethics declarations

Competing interests

A.P. has received research support from the Genomics Institute of the Novartis Foundation. S.T. is a full-time employee of GlaxoSmithKline. C.J.W. has been a scientific advisor, consultant or received research support from Solace Pharmaceuticals, Hydra Biosciences, Pfizer, GlaxoSmithKline and Abbott.

Related links

Related links

DATABASES

IUPHAR Receptor Database

TRPA1

TRPM2

TRPM4

TRPM5

TRPM8

TRPV1

TRPV2

TRPV3

TRPV4

FURTHER INFORMATION

Amgen

Anesiva

GlaxoSmithKline

Glenmark

Glenmark GRC15133 and GRC 17173

Glenmark press release

Neurogen

NeurogesX

Pain Genes database

Glossary

Nociceptor

A high-threshold primary sensory neuron that detects or responds to noxious stimuli.

Inflammatory pain

Pain associated with tissue injury and inflammation characterized by reduced threshold and increased responsiveness.

Neuropathic pain

Pain associated with a lesion to the nervous system.

Michael addition reaction

Nucleophilic addition to an alpha or beta unsaturated carbonyl group.

Click reaction

Copper(I)-catalysed azide-alkyne cycloaddition reaction that can be used for in vivo labelling of molecules.

Endocannabinoids

Endogenous agonists of cannabinoid receptors in animals.

Endovanilloid

An endogenous ligand of the TRPV1 receptor.

Peripheral sensitization

Reduction in the threshold for activation of the peripheral terminal of nociceptors produced by inflammatory mediators.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patapoutian, A., Tate, S. & Woolf, C. Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov 8, 55–68 (2009). https://doi.org/10.1038/nrd2757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2757

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing