Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives

Key Points

  • Recent research progress into the molecular pathogenesis of Alzheimer's disease has been translated into several promising drug candidates that have the potential to produce disease-modifying effects.

  • Biomarkers that reflect the central pathogenic processes in Alzheimer's disease have been developed and validated in numerous studies. These include cerebrospinal fluid (CSF) assays for tau and amyloid-β isoforms; magnetic resonance imaging (MRI) measurements of brain atrophy; and positron emission tomography (PET) techniques for brain metabolism and amyloid-β deposition.

  • Academic institutions, the pharmaceutical industry and regulatory organizations all agree that biomarkers have an important role in the drug development process.

  • Biomarkers have several potential uses in clinical trials. These include their use as diagnostic aids to enrich the patient sample with cases of Alzheimer's disease; as tools to identify and monitor the biochemical effect of the drug candidate; and as safety markers to detect potential side effects of the drug.

  • Evidence obtained from biomarker studies showing that a drug candidate affects the central disease processes in Alzheimer's disease will, together with a beneficial effect on cognition, be essential for the drug to be labelled as disease-modifying.

  • A catch-22-like situation exists in validating Alzheimer's disease biomarkers for use in drug development. Biomarker validation depends on effective drugs that target Alzheimer's disease pathogenesis, which are not currently available. At the same time, evidence from biomarker studies is needed for a new drug to be labelled as disease-modifying.

  • There are numerous ongoing clinical trials investigating disease-modifying drug candidates, which include biomarkers as end points. These trials will provide information on whether biomarkers will be valuable tools as surrogate end points to predict the clinical outcome and as the basis for a disease-modifying claim of the drug.

  • If disease-modifying drugs are approved for the treatment of Alzheimer's disease, biomarkers will facilitate the diagnosis of Alzheimer's disease very early on in the course of the disease before neurodegeneration is too severe and widespread.

Abstract

Advances in therapeutic strategies for Alzheimer's disease that lead to even small delays in onset and progression of the condition would significantly reduce the global burden of the disease. To effectively test compounds for Alzheimer's disease and bring therapy to individuals as early as possible there is an urgent need for collaboration between academic institutions, industry and regulatory organizations for the establishment of standards and networks for the identification and qualification of biological marker candidates. Biomarkers are needed to monitor drug safety, to identify individuals who are most likely to respond to specific treatments, to stratify presymptomatic patients and to quantify the benefits of treatments. Biomarkers that achieve these characteristics should enable objective business decisions in portfolio management and facilitate regulatory approval of new therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of disease-modifying treatment effects.
Figure 2: Detection of effects of cholinergic treatment on cortical activation in patients with Alzheimer's disease using functional magnetic resonance imaging.
Figure 3: The four categories of biomarker: target, mechanism, pathophysiological and diagnostic.
Figure 4: Translation of biomarkers.

Similar content being viewed by others

References

  1. Blennow, K., de Leon, M. J. & Zetterberg, H. Alzheimer's disease. Lancet 368, 387–403 (2006).

    CAS  PubMed  Google Scholar 

  2. Klafki, H. W., Staufenbiel, M., Kornhuber, J. & Wiltfang, J. Therapeutic approaches to Alzheimer's disease. Brain 129, 2840–2855, (2006).

    Article  PubMed  Google Scholar 

  3. Garcia-Alloza, M. et al. Existing plaques and neuritic abnormalities in APP:PS1 mice are not affected by administration of the gamma-secretase inhibitor LY-411575. Mol. Neurodegener. 4, 19 (2009).

    PubMed  PubMed Central  Google Scholar 

  4. Das, P., Murphy, M. P., Younkin, L. H., Younkin, S. G. & Golde, T. E. Reduced effectiveness of Aβ1–42 immunization in APP transgenic mice with significant amyloid deposition. Neurobiol. Aging 22, 721–727 (2001).

    CAS  PubMed  Google Scholar 

  5. Levites, Y. et al. Anti-Aβ42- and anti-Aβ40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J. Clin. Invest. 116, 193–201 (2006).

    CAS  PubMed  Google Scholar 

  6. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H. M. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement. 3, 186–191 (2007).

    PubMed  Google Scholar 

  7. Siemers, E. R. How can we recognize “disease modification” effects? J. Nutr. Health Aging 13, 341–343 (2009).

    CAS  PubMed  Google Scholar 

  8. Frank, R. & Hargreaves, R. Clinical biomarkers in drug discovery and development. Nature Rev. Drug Discov. 2, 566–580, (2003).

    CAS  Google Scholar 

  9. Frank, R. A. et al. Biological markers for therapeutic trials in Alzheimer's disease. Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer's disease. Neurobiol. Aging 24, 521–536, (2003).

    PubMed  Google Scholar 

  10. Orgogozo, J. M. et al. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61, 46–54 (2003).

    CAS  PubMed  Google Scholar 

  11. Blennow, K. & Hampel, H. CSF markers for incipient Alzheimer's disease. Lancet Neurol. 2, 605–613 (2003).

    CAS  PubMed  Google Scholar 

  12. Teipel, S. J., Meindl, T., Grinberg, L., Heinsen, H. & Hampel, H. Novel MRI techniques in the assessment of dementia. Eur. J. Nucl. Med. Mol. Imaging 35 (Suppl. 1), 58–69 (2008).

    Google Scholar 

  13. Hampel, H. et al. Core candidate neurochemical and imaging biomarkers of Alzheimer's disease. Alzheimers Dement. 4, 38–48 (2008).

    CAS  PubMed  Google Scholar 

  14. Whiting, P., Rutjes, A. W., Reitsma, J. B., Bossuyt, P. M. & Kleijnen, J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med. Res. Methodol. 3, 25 (2003).

    PubMed  PubMed Central  Google Scholar 

  15. Nagy, Z. et al. Hippocampal pathology reflects memory deficit and brain imaging measurements in Alzheimer's disease: clinicopathologic correlations using three sets of pathologic diagnostic criteria. Dementia 7, 76–81 (1996).

    CAS  PubMed  Google Scholar 

  16. Logothetis, N. K. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 1003–1037 (2002).

    PubMed  PubMed Central  Google Scholar 

  17. Reivich, M. et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ. Res. 44, 127–137 (1979).

    CAS  PubMed  Google Scholar 

  18. Lockhart, A. et al. PIB is a non-specific imaging marker of amyloid-β (Aβ) peptide-related cerebral amyloidosis. Brain 130, 2607–2615 (2007).

    CAS  PubMed  Google Scholar 

  19. Allegri, R. F., Glaser, F. B., Taragano, F. E. & Buschke, H. Mild cognitive impairment: believe it or not? Int. Rev. Psychiatry 20, 357–363 (2008).

    PubMed  Google Scholar 

  20. Fennema-Notestine, C. et al. Structural neuroimaging in the detection and prognosis of pre-clinical and early AD. Behav. Neurol. 21, 3–12 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. Giedd, J. N. et al. Reliability of cerebral measures in repeated examinations with magnetic resonance imaging. Psychiatry Res. 61, 113–119 (1995).

    CAS  PubMed  Google Scholar 

  22. Ewers, M. et al. Multicenter assessment of reliability of cranial MRI. Neurobiol. Aging 27, 1051–1059 (2006).

    CAS  PubMed  Google Scholar 

  23. Bokde, A. L. et al. Decreased activation along the dorsal visual pathway after a 3-month treatment with galantamine in mild Alzheimer disease: a functional magnetic resonance imaging study. J. Clin. Psychopharmacol. 29, 147–156 (2009).

    CAS  PubMed  Google Scholar 

  24. Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N. & Namboodiri, A. M. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81, 89–131 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kantarci, K. 1H magnetic resonance spectroscopy in dementia. Br. J. Radiol. 80, S146–S152 (2007).

    CAS  PubMed  Google Scholar 

  26. Alexander, G. E., Chen, K., Pietrini, P., Rapoport, S. I. & Reiman, E. M. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer's disease treatment studies. Am. J. Psychiatry 159, 738–745 (2002).

    PubMed  Google Scholar 

  27. Hirono, N., Hashimoto, M., Ishii, K., Kazui, H. & Mori, E. One-year change in cerebral glucose metabolism in patients with Alzheimer's disease. J. Neuropsychiatry Clin. Neurosci. 16, 488–492 (2004).

    CAS  PubMed  Google Scholar 

  28. Heiss, W. D., Kessler, J., Mielke, R., Szelies, B. & Herholz, K. Long-term effects of phosphatidylserine, pyritinol, and cognitive training in Alzheimer's disease. A neuropsychological, EEG, and PET investigation. Dementia 5, 88–98 (1994).

    CAS  PubMed  Google Scholar 

  29. Mega, M. S. et al. Metabolic patterns associated with the clinical response to galantamine therapy: a fludeoxyglucose F18 positron emission tomographic study. Arch. Neurol. 62, 721–728 (2005).

    PubMed  Google Scholar 

  30. Stefanova, E. et al. Longitudinal PET evaluation of cerebral glucose metabolism in rivastigmine treated patients with mild Alzheimer's disease. J. Neural Transm. 113, 205–218 (2006).

    CAS  PubMed  Google Scholar 

  31. Kadir, A. et al. Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer's disease. Ann. Neurol. 63, 621–631 (2008).

    CAS  PubMed  Google Scholar 

  32. Klunk, W. E. et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann. Neurol. 55, 306–319 (2004).

    CAS  PubMed  Google Scholar 

  33. Jack, C. R. Jr et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 131, 665–680 (2008).

    PubMed  PubMed Central  Google Scholar 

  34. Maeda, J. et al. Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer's disease enabled by positron emission tomography. J. Neurosci. 27, 10957–10968 (2007).

    CAS  PubMed  Google Scholar 

  35. Villemagne, V. L. et al. Aβ deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer's disease. Neuropsychologia 46, 1688–1697 (2008).

    CAS  PubMed  Google Scholar 

  36. Forsberg, A. et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol. Aging 29, 1456–1465, (2008).

    CAS  PubMed  Google Scholar 

  37. Rowe, C. C. et al. Imaging of amyloid beta in Alzheimer's disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 7, 129–135 (2008).

    CAS  PubMed  Google Scholar 

  38. Bobinski, M. et al. The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease. Neuroscience 95, 721–725 (2000).

    CAS  PubMed  Google Scholar 

  39. Vellas, B. et al. Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr. Alzheimer Res. 6, 144–151 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Saumier, D. et al. Lessons learned in the use of volumetric MRI in therapeutic trials in Alzheimer's disease: the ALZHEMED (Tramiprosate) experience. J. Nutr. Health Aging 13, 370–372 (2009).

    CAS  PubMed  Google Scholar 

  41. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genet. 41, 1088–1093 (2009).

    CAS  PubMed  Google Scholar 

  42. Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature Genet. 41, 1094–1099 (2009).

    CAS  PubMed  Google Scholar 

  43. Klunk, W. E. et al. Imaging the pathology of Alzheimer's disease: amyloid-imaging with positron emission tomography. Neuroimaging Clin. N. Am. 13, 781–789 (2003).

    PubMed  Google Scholar 

  44. Chen, K. et al. Correlations between apolipoprotein E ɛ4 gene dose and whole brain atrophy rates. Am. J. Psychiatry 164, 916–921 (2007).

    PubMed  Google Scholar 

  45. Scahill, R. I., Schott, J. M., Stevens, J. M., Rossor, M. N. & Fox, N. C. Mapping the evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. Proc. Natl Acad. Sci. USA 99, 4703–4707 (2002).

    CAS  PubMed  Google Scholar 

  46. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med. 2, 864–870 (1996).

    CAS  PubMed  Google Scholar 

  47. Myers, A. J. et al. A survey of genetic human cortical gene expression. Nature Genet. 39, 1494–1499 (2007).

    CAS  PubMed  Google Scholar 

  48. Kauwe, J. S. et al. Alzheimer's disease risk variants show association with cerebrospinal fluid amyloid β. Neurogenetics 10, 13–17 (2009).

    CAS  PubMed  Google Scholar 

  49. Kauwe, J. S. et al. Variation in MAPT is associated with cerebrospinal fluid tau levels in the presence of amyloid-β deposition. Proc. Natl Acad. Sci. USA 105, 8050–8054 (2008).

    CAS  PubMed  Google Scholar 

  50. Melzer, D. et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet. 4, e1000072 (2008).

    PubMed  PubMed Central  Google Scholar 

  51. Makeeva, O., Stepanov, V., Puzyrev, V., Goldstein, D. B. & Grossman, I. Global pharmacogenetics: genetic substructure of Eurasian populations and its effect on variants of drug-metabolizing enzymes. Pharmacogenomics 9, 847–868 (2008).

    CAS  PubMed  Google Scholar 

  52. Farrer, L. A. et al. Statement on use of apolipoprotein E testing for Alzheimer disease. American College of Medical Genetics/American Society of Human Genetics Working Group on ApoE and Alzheimer disease. JAMA 274, 1627–1629 (1995).

    Google Scholar 

  53. Green, R. C. et al. Disclosure of APOE genotype for risk of Alzheimer's disease. N. Engl. J. Med. 361, 245–254 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Herukka, S. K. et al. CSF Aβ42, Tau and phosphorylated Tau, APOE ɛ4 allele and MCI type in progressive MCI. Neurobiol. Aging 28, 507–514 (2007).

    CAS  PubMed  Google Scholar 

  55. Ray, S. et al. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nature Med. 13, 1359–1362 (2007).

    CAS  PubMed  Google Scholar 

  56. Irizarry, M. C. Biomarkers of Alzheimer disease in plasma. NeuroRx 1, 226–234 (2004).

    PubMed  PubMed Central  Google Scholar 

  57. Vanderstichele, H. et al. Standardization of measurement of beta-amyloid(1–42) in cerebrospinal fluid and plasma. Amyloid 7, 245–258 (2000).

    CAS  PubMed  Google Scholar 

  58. Peskind, E. R. et al. Safety and acceptability of the research lumbar puncture. Alzheimer Dis. Assoc. Disord. 19, 220–225 (2005).

    PubMed  Google Scholar 

  59. Blennow, K. Cerebrospinal fluid protein biomarkers for Alzheimer's disease. NeuroRx 1, 213–225 (2004).

    PubMed  PubMed Central  Google Scholar 

  60. Strozyk, D., Blennow, K., White, L. R. & Launer, L. J. CSF Aβ 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60, 652–656 (2003).

    CAS  PubMed  Google Scholar 

  61. Fagan, A. M. et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann. Neurol. 59, 512–519 (2006).

    CAS  PubMed  Google Scholar 

  62. Buerger, K. et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease. Brain 129, 3035–3041 (2006).

    PubMed  Google Scholar 

  63. Shaw, L. M. et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann. Neurol. 65, 403–413, (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Visser, P. J. et al. Prevalence and prognostic value of CSF markers of Alzheimer's disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurol. 8, 619–627, (2009).

    PubMed  Google Scholar 

  65. Mattsson, N. et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302, 385–393, (2009).

    CAS  PubMed  Google Scholar 

  66. Andreasson, U., Portelius, E., Andersson, M. E., Blennow, K. & Zetterberg, H. Aspects of β-amyloid as a biomarker for Alzheimer's disease. Biomarkers Med. 1, 59–78 (2007).

    CAS  Google Scholar 

  67. de Jong, D., Kremer, B. P., Olde Rikkert, M. G. & Verbeek, M. M. Current state and future directions of neurochemical biomarkers for Alzheimer's disease. Clin. Chem. Lab. Med. 45, 1421–1434 (2007).

    CAS  PubMed  Google Scholar 

  68. Zhong, Z. et al. Levels of β-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment. Arch. Gen. Psychiatry 64, 718–726 (2007).

    CAS  PubMed  Google Scholar 

  69. Zetterberg, H. et al. Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch. Neurol. 65, 1102–1107 (2008).

    PubMed  Google Scholar 

  70. Davidsson, P. et al. Differential increase in cerebrospinal fluid-acetylcholinesterase after treatment with acetylcholinesterase inhibitors in patients with Alzheimer's disease. Neurosci. Lett. 300, 157–160 (2001).

    CAS  PubMed  Google Scholar 

  71. von der Kammer, H. et al. Muscarinic acetylcholine receptors activate expression of the EGR gene family of transcription factors. J. Biol. Chem. 273, 14538–14544 (1998).

    CAS  PubMed  Google Scholar 

  72. Blennow, K. et al. Longitudinal stability of CSF biomarkers in Alzheimer's disease. Neurosci. Lett. 419, 18–22 (2007).

    CAS  PubMed  Google Scholar 

  73. Zetterberg, H. et al. Intra-individual stability of CSF biomarkers for Alzheimer's disease over two years. J. Alzheimers Dis. 12, 255–260 (2007).

    CAS  PubMed  Google Scholar 

  74. Lanz, T. A., Hosley, J. D., Adams, W. J. & Merchant, K. M. Studies of Aβ pharmacodynamics in the brain, cerebrospinal fluid, and plasma in young (plaque-free) Tg2576 mice using the γ-secretase inhibitor N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b, d]azepin-7-yl]-L-alaninamide (LY-411575). J. Pharmacol. Exp. Ther. 309, 49–55 (2004).

    CAS  PubMed  Google Scholar 

  75. Anderson, J. J. et al. Reductions in β-amyloid concentrations in vivo by the γ-secretase inhibitors BMS-289948 and BMS-299897. Biochem. Pharmacol. 69, 689–698 (2005).

    CAS  PubMed  Google Scholar 

  76. Fleisher, A. S. et al. Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease. Arch. Neurol. 65, 1031–1038 (2008).

    PubMed  PubMed Central  Google Scholar 

  77. Sankaranarayanan, S. et al. First demonstration of cerebrospinal fluid and plasma Aβ lowering with oral administration of a β-site amyloid precursor protein-cleaving enzyme 1 inhibitor in nonhuman primates. J. Pharmacol. Exp. Ther. 328, 131–140 (2009).

    CAS  PubMed  Google Scholar 

  78. Adlard, P. A. et al. Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ. Neuron 59, 43–55 (2008).

    CAS  PubMed  Google Scholar 

  79. Lannfelt, L. et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 7, 779–786 (2008).

    CAS  PubMed  Google Scholar 

  80. Hesse, C. et al. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci. Lett. 297, 187–190 (2001).

    CAS  PubMed  Google Scholar 

  81. Zetterberg, H. et al. Neurochemical aftermath of amateur boxing. Arch. Neurol. 63, 1277–1280 (2006).

    PubMed  Google Scholar 

  82. Gilman, S. et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553–1562 (2005).

    CAS  PubMed  Google Scholar 

  83. Degerman Gunnarsson, M., Kilander, L., Basun, H. & Lannfelt, L. Reduction of phosphorylated tau during memantine treatment of Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 24, 247–252 (2007).

    CAS  PubMed  Google Scholar 

  84. Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).

    CAS  PubMed  Google Scholar 

  85. Dubois, B. et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6, 734–746 (2007).

    PubMed  Google Scholar 

  86. Carrillo, M. C. et al. Early risk assessment for Alzheimer's disease. Alzheimers Dement. 5, 182–196 (2009).

    CAS  PubMed  Google Scholar 

  87. Coats, M. & Morris, J. C. Antecedent biomarkers of Alzheimer's disease: the adult children study. J. Geriatr. Psychiatry Neurol. 18, 242–244 (2005).

    PubMed  Google Scholar 

  88. Mintun, M. A. et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67, 446–452 (2006).

    CAS  PubMed  Google Scholar 

  89. Mani, R. B. The evaluation of disease modifying therapies in Alzheimer's disease: a regulatory viewpoint. Stat. Med. 23, 305–314 (2004).

    PubMed  Google Scholar 

  90. Pepe, M. S. et al. Phases of biomarker development for early detection of cancer. J. Natl Cancer Inst. 93, 1054–1061 (2001).

    CAS  PubMed  Google Scholar 

  91. Leber, P. Slowing the progression of Alzheimer disease: methodologic issues. Alzheimer Dis. Assoc. Disord. 11 (Suppl. 5), 10–21; discussion 37–19 (1997).

    Google Scholar 

  92. Woodcock, J. & Woosley, R. The FDA critical path initiative and its influence on new drug development. Annu. Rev. Med. 59, 1–12 (2008).

    CAS  PubMed  Google Scholar 

  93. Katz, R. Biomarkers and surrogate markers: an FDA perspective. NeuroRx 1, 189–195 (2004).

    PubMed  PubMed Central  Google Scholar 

  94. Temple, R. Are surrogate markers adequate to assess cardiovascular disease drugs? JAMA 282, 790–795 (1999).

    CAS  PubMed  Google Scholar 

  95. Baker, S. G. & Kramer, B. S. A perfect correlate does not a surrogate make. BMC Med. Res. Methodol. 3, 16 (2003).

    PubMed  PubMed Central  Google Scholar 

  96. Fleming, T. R. & DeMets, D. L. Surrogate end points in clinical trials: are we being misled? Ann. Intern. Med. 125, 605–613 (1996).

    CAS  PubMed  Google Scholar 

  97. Fox, N. C. et al. Effects of Aβeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64, 1563–1572 (2005).

    CAS  PubMed  Google Scholar 

  98. Jack, C. R. Jr et al. The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27, 685–691 (2008).

    PubMed  PubMed Central  Google Scholar 

  99. Mueller, S. G. et al. Ways toward an early diagnosis in Alzheimer's disease: The Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimers Dement. 1, 55–66 (2005).

    PubMed  PubMed Central  Google Scholar 

  100. Williams, S. A., Slavin, D. E., Wagner, J. A. & Webster, C. J. A cost-effectiveness approach to the qualification and acceptance of biomarkers. Nature Rev. Drug Discov. 5, 897–902 (2006).

    CAS  Google Scholar 

  101. Gutman, S. & Kessler, L. G. The US Food and Drug Administration perspective on cancer biomarker development. Nature Rev. Cancer 6, 565–571 (2006).

    CAS  Google Scholar 

  102. Grundman, M. & Black, R. O3-04-05: clinical trials of bapineuzumab, a β-amyloid-targeted immunotherapy in patients with mild to moderate Alzheimer's disease. Alzheimers Dement. 4, T166 (2008).

    Google Scholar 

  103. Sanhai, W. R., Spiegel, J. & Ferrari, M. A critical path approach to advance nanoengineered medical products. Drug Discov. Today Technol. 4, 35–41 (2007).

    PubMed  Google Scholar 

  104. Ridha, B. H. et al. Application of automated medial temporal lobe atrophy scale to Alzheimer disease. Arch. Neurol. 64, 849–854 (2007).

    PubMed  Google Scholar 

  105. Byrum, C. E. et al. Accuracy and reproducibility of brain and tissue volumes using a magnetic resonance segmentation method. Psychiatry Res. 67, 215–234 (1996).

    CAS  PubMed  Google Scholar 

  106. Jack, C. R. Jr et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology 49, 786–794 (1997).

    PubMed  PubMed Central  Google Scholar 

  107. Wang, P. N., Lirng, J. F., Lin, K. N., Chang, F. C. & Liu, H. C. Prediction of Alzheimer's disease in mild cognitive impairment: a prospective study in Taiwan. Neurobiol. Aging 27, 1797–1806, (2006).

    CAS  PubMed  Google Scholar 

  108. Fox, N. C., Cousens, S., Scahill, R., Harvey, R. J. & Rossor, M. N. Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch. Neurol. 57, 339–344 (2000).

    CAS  PubMed  Google Scholar 

  109. Loubinoux, I. et al. Within-session and between-session reproducibility of cerebral sensorimotor activation: a test–retest effect evidenced with functional magnetic resonance imaging. J. Cereb. Blood Flow Metab. 21, 592–607 (2001).

    CAS  PubMed  Google Scholar 

  110. Kircher, T. T., Erb, M., Grodd, W. & Leube, D. T. Cortical activation during cholinesterase-inhibitor treatment in Alzheimer disease: preliminary findings from a pharmaco-fMRI study. Am. J. Geriatr. Psychiatry 13, 1006–1013 (2005).

    PubMed  Google Scholar 

  111. Bokde, A. L. W. et al. Decreased activation along the dorsal visual pathway after a 3-month treatment with galantamine in mild Alzheimer disease. J. Clin. Psychopharmacol. 29, 147–156 (2009).

    CAS  PubMed  Google Scholar 

  112. Goekoop, R., Scheltens, P., Barkhof, F. & Rombouts, S. A. Cholinergic challenge in Alzheimer patients and mild cognitive impairment differentially affects hippocampal activation — a pharmacological fMRI study. Brain 129, 141–157 (2006).

    PubMed  Google Scholar 

  113. Chao, L. L. et al. Reduced medial temporal lobe N-acetylaspartate in cognitively impaired but nondemented patients. Neurology 64, 282–289 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Jessen, F. et al. Treatment monitoring and response prediction with proton MR spectroscopy in AD. Neurology 67, 528–530 (2006).

    CAS  PubMed  Google Scholar 

  115. Herholz, K. et al. Comparability of FDG PET studies in probable Alzheimer's disease. J. Nucl. Med. 34, 1460–1466 (1993).

    CAS  PubMed  Google Scholar 

  116. Edison, P. et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 68, 501–508 (2007).

    CAS  PubMed  Google Scholar 

  117. Heiss, W. D. et al. Effect of piracetam on cerebral glucose metabolism in Alzheimer's disease as measured by positron emission tomography. J. Cereb. Blood Flow Metab. 8, 613–617 (1988).

    CAS  PubMed  Google Scholar 

  118. Teipel, S. J. et al. Effects of donepezil on cortical metabolic response to activation during 18FDG-PET in Alzheimer's disease: a double-blind cross-over trial. Psychopharmacology (Berl.) 187, 86–94 (2006).

    CAS  Google Scholar 

  119. Engler, H. et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain 129, 2856–2866 (2006).

    PubMed  Google Scholar 

  120. Bohnen, N. I. et al. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 76, 315–319 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Andreasen, N. et al. Cerebrospinal fluid β-amyloid(1–42) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease. Arch. Neurol. 56, 673–680 (1999).

    CAS  PubMed  Google Scholar 

  122. Olsson, A. et al. Simultaneous measurement of β-amyloid(1–42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin. Chem. 51, 336–345 (2005).

    CAS  PubMed  Google Scholar 

  123. Fukuyama, R. et al. Age-dependent change in the levels of Aβ40 and Aβ42 in cerebrospinal fluid from control subjects, and a decrease in the ratio of Aβ42 to Aβ40 level in cerebrospinal fluid from Alzheimer's disease patients. Eur. Neurol. 43, 155–160 (2000).

    CAS  PubMed  Google Scholar 

  124. Kanai, M. et al. Longitudinal study of cerebrospinal fluid levels of tau, Aβ1–40, and Aβeta1–42(43) in Alzheimer's disease: a study in Japan. Ann. Neurol. 44, 17–26 (1998).

    CAS  PubMed  Google Scholar 

  125. Lewczuk, P. et al. Neurochemical diagnosis of Alzheimer's dementia by CSF Aβ42, Aβ42/Aβ40 ratio and total tau. Neurobiol. Aging 25, 273–281 (2004).

    CAS  PubMed  Google Scholar 

  126. Hansson, O. et al. Prediction of Alzheimer's disease using the CSF Aβ42/Aβ40 ratio in patients with mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 23, 316–320 (2007).

    CAS  PubMed  Google Scholar 

  127. Shoji, M. et al. Combination assay of CSF tau, Aβ1–40 and Aβ1–42(43) as a biochemical marker of Alzheimer's disease. J. Neurol. Sci. 158, 134–140 (1998).

    CAS  PubMed  Google Scholar 

  128. de Leon, M. J. et al. Longitudinal cerebrospinal fluid tau load increases in mild cognitive impairment. Neurosci. Lett. 333, 183–186 (2002).

    CAS  PubMed  Google Scholar 

  129. de Leon, M. J. et al. Longitudinal CSF and MRI biomarkers improve the diagnosis of mild cognitive impairment. Neurobiol. Aging 27, 394–401 (2006).

    CAS  PubMed  Google Scholar 

  130. Olsson, A. et al. Measurement of α- and β-secretase cleaved amyloid precursor protein in cerebrospinal fluid from Alzheimer patients. Exp. Neurol. 183, 74–80 (2003).

    CAS  PubMed  Google Scholar 

  131. Verheijen, J. H. et al. Detection of a soluble form of BACE-1 in human cerebrospinal fluid by a sensitive activity assay. Clin. Chem. 52, 1168–1174 (2006).

    CAS  PubMed  Google Scholar 

  132. Holsinger, R. M., Lee, J. S., Boyd, A., Masters, C. L. & Collins, S. J. CSF BACE1 activity is increased in CJD and Alzheimer disease versus [corrected] other dementias. Neurology 67, 710–712 (2006).

    CAS  PubMed  Google Scholar 

  133. Holsinger, R. M., McLean, C. A., Collins, S. J., Masters, C. L. & Evin, G. Increased beta-secretase activity in cerebrospinal fluid of Alzheimer's disease subjects. Ann. Neurol. 55, 898–899 (2004).

    PubMed  Google Scholar 

  134. Georganopoulou, D. G. et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc. Natl Acad. Sci. USA 102, 2273–2276 (2005).

    CAS  PubMed  Google Scholar 

  135. Vanderstichele, H. et al. Analytical performance and clinical utility of the INNOTEST PHOSPHO-TAU(181P) assay for discrimination between Alzheimer's disease and dementia with Lewy bodies. Clin. Chem. Lab. Med. 44, 1472–1480 (2006).

    CAS  PubMed  Google Scholar 

  136. Vanmechelen, E. et al. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci. Lett. 285, 49–52, (2000).

    CAS  PubMed  Google Scholar 

  137. Kohnken, R. et al. Detection of tau phosphorylated at threonine 231 in cerebrospinal fluid of Alzheimer's disease patients. Neurosci. Lett. 287, 187–190 (2000).

    CAS  PubMed  Google Scholar 

  138. Hampel, H. et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch. Gen. Psychiatry 61, 95–102 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K. Duggan for technical assistance. H.H. acknowledges support by the Science Foundation Ireland Investigator Neuroimaging Grant Programme (08/IN.1/B1846).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Hampel.

Ethics declarations

Competing interests

Harald Hampel has participated on the Advisory Board of BRAHMS, Henningsdorf, Germany, and has received research support for his institutions from the same company.

Richard Frank is an employee of GE Healthcare.

John Hardy is a consultant for Eisai and MerckSerono.

Kaj Blennow has participated on the Advisory Board for Innogenetics NV, Ghent, Belgium, and has received research support to his institution from the same company.

Karl Broich, Stefan J. Teipel, Russel G. Katz, Karl Herholz, Arun L.W. Bokde, Frank Jessen, Yvonne C. Hoessler, Wendy R. Sanhai, Henrik Zetterberg and Janet Woodcock declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Imaging biomarkers for Alzheimer's disease (PDF 565 kb)

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

FURTHER INFORMATION

ADNI

ADNI clinical trial

Alzheimer's Association Research Roundtable

Guidance for Industry Qualifying for Pediatric Exclusivity Under Section 505A of the Federal Food, Drug, and Cosmetic Act

Improved Predictivity of Efficacy Evaluation — Brain Disorders

Improved Predictivity of Efficacy Evaluation — Brain Disorders

The Biomarkers Consortium

The Critical Path Initiative

Glossary

Amyloid-β

(Aβ). An aggregation-prone peptide derived from the amyloid precursor protein. The 42 amino acid isoform of the peptide is the main component of plaques in Alzeimer's disease.

Tau protein

A microtubule-associated protein located in the neuronal axons. Hyperphosphorylated tau is the main component of neurofibrillary tangles in Alzheimer's disease.

DSM-IV

(Diagnostic and Statistical Manual of Mental Disorders, Fourth edition). This manual outlines diagnostic criteria for psychiatric disorders and is published by the American Psychiatric Association.

ICD-10

(International Statistical Classification of Diseases, Tenth edition). This book outlines diagnostic criteria for human diseases and is published by the World Health Organization.

NINCDS-ADRDA

(The National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association). This outlines criteria for diagnosing Alzheimer's disease.

Primary end point

A primary end point is defined as the single main question to be answered in a given clinical trial.

Biomarker

An objective measure of a biological or pathogenic process that can be used to evaluate disease risk or prognosis. It can be used to guide clinical diagnosis or to monitor therapeutic interventions.

Surrogate end point

A substitute for a clinical end point in a clinical trial.

Secondary end point

An end point in a trial that provides additional characterization of treatment effect, but is not sufficient by itself to fully characterize the benefit or to support a claim for a treatment effect.

Longitudinal study

A research study with repeated observations of the same patients over long periods of time.

Phantom test

A plastic cylinder with standardized measures and density used for calibration of magnetic resonance imaging devices.

Transformation map

A spatially extended vector field that describes the spatial warps that are needed to align a three-dimensional image of the brain into a common standard space.

Classical plaque

A dense aggregation of amyloid-β protein with classical amyloid characteristics, which is surrounded by swollen neuritis and reactive glial cells.

Diffuse plaque

An aggregation of amyloid-β protein that can only be detected using immunohistochemistry.

AN1792 vaccination trial

The first clinical trial on active amyloid-β immunotherapy in Alzheimer's disease.

Huntington's protocol

Individuals who have family members with Huntington's disease are offered genetic counselling, which includes the possibility of presymptomatic DNA testing. However, this is only offered after a series of careful counselling sessions to ensure that the individual understands the issues involved in knowing their genetic status.

TOMM40

A gene encoding a mitochondrial protein that is located on chromosome 19 adjacent to the apolipoprotein E gene.

Risk chart

A graph illustrating the risk of developing Alzheimer's disease by age. This risk is modified by genetic status, especially by apolipoprotein E genotype status. Other genes will have a smaller effect on this chart (except in families with amyloid precursor protein and presenilin mutations).

Phase 0 trial

An exploratory first-in-human trial with single subtherapeutic drug doses and small numbers of subjects to provide first data on drug pharmacokinetics and pharmacodynamics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hampel, H., Frank, R., Broich, K. et al. Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9, 560–574 (2010). https://doi.org/10.1038/nrd3115

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3115

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research