Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting microRNAs in cancer: rationale, strategies and challenges

Key Points

  • The rationale for using microRNAs (miRNAs) as anticancer drugs is based on two major findings: miRNA expression is deregulated in cancer compared with normal tissues and the cancer phenotype can be changed by targeting miRNA expression.

  • One of the most appealing properties of miRNAs as therapeutic agents is their ability to target multiple genes, frequently in the context of a network, making them highly efficient in regulating distinct biological cell processes relevant to normal and malignant cell homeostasis

  • There are two main strategies to target miRNA expression in cancer. Direct strategies involve the use of oligonucleotides or virus-based constructs to either block the expression of an oncogenic miRNA or to substitute for the loss of expression of a tumour suppressor miRNA. The indirect strategy involves the use of drugs to modulate miRNA expression by targeting their transcription and their processing.

  • Several in vitro and in vivo studies using locked nucleic acid (LNA) antimiR have shown feasibility and high efficiency of this approach. A Phase I trial in humans using LNA anti-miR-122 is ongoing. This study will provide valuable information about pharmacokinetics and safety profiles.

  • The challenges for developing miRNA-based therapeutics are the same as for siRNA therapeutics and comprise delivery, potential off-target effects and safety concerns.

  • Reprogramming aberrant miRNA networks in cancer could be achieved by modulating several of the key miRNAs in a network using known drugs, including chemotherapy agents or biocompounds.

  • miRNA effects are currently largely interpreted as the result of miRNA–mRNA 3′untranslated region (UTR) interactions that cause target post-translational inhibition or degradation. However, focusing on this mechanism to design miRNA therapeutics is likely to prove too simplistic, owing to the emerging miRNA mechanisms, which include decoy activity and 5′ UTR and direct DNA regulatory activities.

Abstract

MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that regulate gene expression. Early studies have shown that miRNA expression is deregulated in cancer and experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression. Based on these observations, miRNA-based anticancer therapies are being developed, either alone or in combination with current targeted therapies, with the goal to improve disease response and increase cure rates. The advantage of using miRNA approaches is based on its ability to concurrently target multiple effectors of pathways involved in cell differentiation, proliferation and survival. In this Review, we describe the role of miRNAs in tumorigenesis and critically discuss the rationale, the strategies and the challenges for the therapeutic targeting of miRNAs in cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MicroRNA biogenesis and effector pathways.
Figure 2: MicroRNAs as oncogenes and tumour suppressors.
Figure 3: Transcriptome–microRNA networks in cancer.
Figure 4: Strategies for microRNA-based therapies.
Figure 5: Common oligonucleotide modification structures.

Similar content being viewed by others

References

  1. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. & Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, Y., Ahn, C., Han, J., Choi, H. & Kim, J. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 14, 2162–2167 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hammond, S., Bernstein, E., Beach, D. & Hannon, G. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Thimmaiah, P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  Google Scholar 

  9. Hutvanger, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enxyme complex. Science 297, 2056–2060 (2002).

    Article  CAS  Google Scholar 

  10. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lewis, B., Shih, I., Jones-Rhoades, M., Bartel, D. & Burge, C. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Krek, D. et al. Combinatorial microRNA target predictions. Nature Genet. 37, 495–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Betel, D., Wilson, M., Gabow, A., Marks, D. S. & Sander, C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 36, D149–D153 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ivanovska, I. & Cleary, M. A. Combinatorial microRNAs: working together to make a difference. Cell Cycle 20, 3137–3142 (2008).

    Article  Google Scholar 

  16. Stark, A. et al. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450, 219–232 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ørom, U. A., Nielsen, F. N. & Lund, A. H. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell 4, 460–471 (2008).

    Article  CAS  Google Scholar 

  18. Eiring, A. et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140, 652–665 (2010). First evidence of miRNA decoy activity in gene regulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beitzinger, M. & Meister, G. MicroRNAs: from decay to decoy. Cell 140, 612–614 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Khraiwesh, B. et al. Transcriptional control of gene expression by microRNAs. Cell 140, 112–122 (2010). First report indicating transcriptional control of gene expression by miRNAs.

    Article  CAS  Google Scholar 

  21. Gonzalez, S., Pisano, D. G. & Serrano, M. Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle 7, 2601–2608 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, D. H., Saetrom, P., Snøve, O. Jr & Rossi, J. J. MicroRNA directed transcriptional gene silencing in mammalian cells. Proc. Natl Acad. Sci. USA 105, 16230–16235 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Calin, G. A. et al. Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002). First report of miRNA deregulation in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Volinia, S. et al. A microRNA expression signature in human solid tumors defines cancer targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2005). Comprehensive analysis of miRNA deregulation in solid tumours.

    Article  CAS  Google Scholar 

  26. Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Petrocca, F. et al. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13, 272–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Diosdado, B. et al. MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br. J. Cancer 101, 707–714 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Calin, G. A. et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353, 1793–1801 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Iorio, M. V. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Garzon, R. et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111, 3183–3189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schetter, A. J. et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299, 425–436 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ciafre, S. A. et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun. 334, 1351–1358 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Bloomston, M. et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297, 1901–1908 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Pichiorri, F. et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc. Natl Acad. Sci. USA 105, 12885–12890 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Metzler, M. et al. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39, 167–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Kluiver, J. et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207, 243–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Garzon, R. et al. Distinctive miRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl Acad. Sci. USA 105, 3945–3950 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang, H. et al. NF-κB–YY1–miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14, 369–381 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Mott, J. L., Kobayashi, S., Bronk, S. F. & Gores, G. J. Mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26, 6133–6140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiong, Y. et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51, 836–845 (2010).

    CAS  PubMed  Google Scholar 

  43. Zhao, J. J. et al. MicroRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 115, 2630–2639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bonci, D. et al. The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature Med. 14, 1271–1277 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Bottoni, A. et al. MiR-15a and miR-16-1 down-regulation in pituitary adenomas. J. Cell Physiol. 204, 280–285 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Takamizawa, J. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Akao, Y., Nakagawa, Y. & Naoe, T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol. Pharm. Bull. 29, 903–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, N. et al. MicroRNA microarray identifies let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res. 68, 10307–10314 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Motoyama, K. et al. Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin. Cancer Res. 14, 2334–2340 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004). A systematic analysis of miRNA localization and the fragile sites associated with cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saito, Y. et al. Specific activation of microRNAs-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9, 435–443 (2006). First evidence that miRNAs are regulated by epigenetic mechanisms in cancer.

    Article  CAS  PubMed  Google Scholar 

  54. Lujambio, A. et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 67, 1424–1429 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Hackanson, B. et al. Epigenetic modification of CCAAT/enhancer binding protein α expression in acute myeloid leukemia. Cancer Res. 68, 3142–3151 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Kumar, M. S. et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev. 23, 2700–2704 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Merritt, WA. et al. Dicer, drosha, and outcomes in patients with ovarian cancer. N. Engl. J. Med. 359, 2641–2650 (2008).

  58. He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chang, T. C. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007). References 58 and 59 report a link between p53 activity and miRNA expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chang, T. S. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics 40, 43–50 (2007). Comprehensive analysis of MYC-regulated miRNAs in cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102, 13944–13949 (2006).

    Article  CAS  Google Scholar 

  62. Klein, U. et al. The DLEU2/miR-15a/16-11 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17, 28–40 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Garzon, R. et al. MicroRNA-29 functions in AML. Blood 114, 5331–5341 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sampson, V. B. et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 67, 9762–9770 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Lujambio, A. et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl Acad. Sci. USA 105, 13556–13561 (2008). Comprehensive analysis of epigentically regulated miRNAs in cancer metastasis.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chan, J. A., Krichevsky, A. M. & Kosik, K. S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Meng, F. et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Frankel, LB. et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 283, 1026–1033 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with elevated miR-17-92 expression in lymphocytes. Nature Immunol. 9, 405–414 (2008). References 69 and 70 established the role of the miR-17-92 cluster in cancer and immunity.

    Article  CAS  Google Scholar 

  71. Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875–886 (2008). First report analysing the contribution of each miR-17-92 paralogues to the phenotype observed in mice with deletion of the whole miR-17-92 cluster.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mu, P. et al. Genetic dissection of the miR-17-92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev. 23, 2806–2811 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Olive, V. et al. miR-19 is a key oncogenic component of miR-17-92. Genes Dev. 23, 2839–2849 (2009). References 72 and 73 established the importance of miR-19 in the oncogenic role of the miR-17-92 cluster.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Costinean, S. et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc. Natl Acad. Sci. USA 103, 7024–7029 (2006). First report indicating that the overexpression of a single miRNA can cause cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. O'Connell, R. M. et al. Sustained expression of micro-RNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J. Exp. Med. 205, 585–594 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. O'Connell, R. M., Chaudhuri, A. A, Rao, D. S. & Baltimore, D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl Acad. Sci. USA 106, 7113–7118 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Costinean, S. et al. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein β are targeted by miR-155 in B cells of Eμ-MiR-155 transgenic mice. Blood 114, 1374–1382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu, Q. et al. The inositol polyphosphate 5-phosphatase ship is a crucial negative regulator of B cell antigen receptor signaling. J. Exp. Med. 188, 1333–1342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ma, L, Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007). First evidence that miRNAs are involved in tumour invasion and metastasis.

    Article  CAS  PubMed  Google Scholar 

  80. Ma, L. et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnol. 28, 341–347 (2010).

    Article  CAS  Google Scholar 

  81. Tavazoie, S. F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Linsley, P. S. et al. Transcripts targeted by the microRNA-16 family cooperatively regulates cell cycle progression. Mol. Cell Biol. 27, 2240–2252 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Calin, G. A. et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl Acad. Sci. USA 105, 5166–5171 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li, Q. J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–161 (2007). Elegant study showing the multitarget activity of a single mRNA in a pathway.

    Article  CAS  PubMed  Google Scholar 

  85. Croce, C. M. Oncogenes and cancer. N. Engl. J. Med. 358, 502–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Boutla, A., Delidakis, C. & Tabler, M. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative targets. Nucleic Acids Res. 31, 4973–4980 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hutzvanger, G., Simard, M. J., Mello, C. C. & Zamore, P. D. Sequence specific inhibition of small RNA function. PLoS Biol. 2, E98 (2004).

    Article  Google Scholar 

  88. Weiler, J., Hunziker, J. & Hall, J. Anti-miRNA oligonucleotides (AMOs); amunition to target miRNAs implicated in human disease? Gene Therapy 13, 496–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005). First in vivo report using antisense oligonucleotides against miRNAs with success.

    Article  CAS  PubMed  Google Scholar 

  90. Vester, B. & Wengel, J. LNA (locked nucleic acid): high affinity targeting of complementary RNA and DNA. Biochemistry 43, 13233–13241 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Elmén, J. et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 36, 1153–1162 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Elmén, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis c virus infection. Science 327, 198–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods 4, 721–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Xiao, J. et al. Novel approaches for gene-specific interference via manipulating actions of micro-RNAs: examination on the pacemaker channel genes HCN2 and HCN4. J. Cell Physiol. 212, 285–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Loya, C. M., Lu, C. S., Van Vactor, D. & Fulga, T. A. Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nature Methods 6, 897–903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Choi, W. Y., Giraldez, A. J. & Schier, A. F. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318, 271–274 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Gumireddy, K. et al. Small-molecule inhibitors of microrna miR-21 function. Angew. Chem. Int. Ed. Engl. 47, 7482–7484 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Michelfelder, S. & Trepel, M. Adeno-associated viral vectors and their redirection to cell-type specific receptors. Adv. Genet. 67, 29–60 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Aagaard, L. & Rossi, J. J. RNAi therapeutics: principles, prospects and challenges. Adv. Drug Deliv. Rev. 59, 75–86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kota, J. et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017 (2009). First report using adenovirus-associated vectors to deliver miRNAS to the liver.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Garzon, R. et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 26, 4148–4157 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Roccaro, A. et al. MicroRNA expression in the biology, prognosis, and therapy of Waldenström macroglobulinemia. Blood 113, 4391–4402 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Galm, O., Herman, J. G. & Baylin, S. B. The fundamental role of epigenetics in hematopoietic malignancies. Blood Rev. 20, 1–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Lamb, J. et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Zhao, X. et al. Controlled delivery of antisense oligonucleotides: a brief review of current strategies. Exp. Opin. Drug Deliv. 6, 673–686 (2009).

    Article  CAS  Google Scholar 

  108. Dias, N. & Stein, C. A. Antisense oligonucleotides: basic concepts and mechanisms. Mol. Cancer Ther. 1, 347–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Malik, R. & Roy, L. Design and development of antisense drugs. Exp. Opin. Drug Discov. 3, 1189–1207 (2008).

    Article  CAS  Google Scholar 

  110. Chiarantini, L. et al. Comparison of a novel delivery systems for antisense peptide nucleic acids. J. Control. Release 109, 24–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Zuhorn, I. S., Engberts, J. B. & Hoeckstra, D. Gene delivery by cationic lipid vectors: overcoming cellular barriers. Eur. Biophys. J. 36; 349–362 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Chirila, T. V. et al. The use of synthethic polymers for delivery of therapeutic antisense oligodeoxynucleotides. Biomaterials 23, 321–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Rosi, N. L. et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312, 1027–1030 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Li, Z. et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J. Biol. Chem. 284, 15676–15684 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xu, H., Cheung, I. Y., Guo, H. F. & Cheung, N. K. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res. 69, 6275–6281 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hornung, V. et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Med. 11, 263–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Garzon, R. et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113, 6411–6418 (2009). This work established miR-29 oligonucleotides as hypomethylating agents in leukaemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fabbri, M. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA 104, 15805–15810 (2007). First report that a miRNA can target the DNA methyltransferase machinery.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007). References 120 and 121 established the role of miR-155 in the regulation of the immune system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kotani, Ai. et al. miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. Blood 114, 4169–4178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pekarsky, Y. et al. Tcl1 expression in CLL is regulated by miR-29 and miR-181. Cancer Res. 66, 1590–11593 (2006).

    Article  CAS  Google Scholar 

  124. Trang, P. et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 29, 1580–1587 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Lee, Y. S. & Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 21, 1025–1030 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lodygin, D. et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7, 2591–2600 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Toyota, M. et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 68, 4123–4132 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Sun, F. et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett. 582, 1564–1568 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Yamakuchi, M., Ferlito, M. & Lowenstein, C. J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl Acad. Sci. USA 105, 13421–13426 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Pigazzi, M., Manara, E., Baron, E. & Basso, G. miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res. 69, 2471–2478 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Cole, K. A. et al. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol. Cancer Res. 6, 735–742 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li, Z. et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc. Natl Acad. Sci. USA 105, 15535–15540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. O'Donnell, K. A. et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Velu, C. S., Baktula, A. M. & Grimes, H. L. Gfi1 regulates miR-21 and miR-196b to control myelopoiesis. Blood 113, 4720–4728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Löffler, D. et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110, 1330–1333 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Zhu, S., Si., M-L, Wu, H. & Mo, Y. Y. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem. 282, 14328–14336 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramiro Garzon or Carlo M. Croce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Antisense

The term antisense is generally used for nucleic acid-based approaches that interferes, in a sequence-selective way, with the processing of RNA from its transcription via mRNA to protein or with the effects of other forms of functional RNA.

Phosphorothioate

An oligonucleotide in which the oxygen atom normally linking two consecutive nucleotides has been replaced with sulphur, which resists degradation by cellular enzymes. The phosphorothioate backbone, although reducing affinity to the target RNA, confers considerable stability to nuclease degradation and is essential for in vivo delivery of antisense oligonucleotides to tissues, as the phosphorothioate promotes protein binding and delays plasma clearance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garzon, R., Marcucci, G. & Croce, C. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9, 775–789 (2010). https://doi.org/10.1038/nrd3179

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing