Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The FGF23–Klotho axis: endocrine regulation of phosphate homeostasis

Abstract

Appropriate levels of phosphate in the body are maintained by the coordinated regulation of the bone-derived growth factor FGF23 and the membrane-bound protein Klotho. The endocrine actions of FGF23, in association with parathyroid hormone and vitamin D, mobilize sodium–phosphate cotransporters that control renal phosphate transport in proximal tubular epithelial cells. The availability of an adequate amount of Klotho is essential for FGF23 to exert its phosphaturic effects in the kidney. In the presence of Klotho, FGF23 activates downstream signaling components that influence the homeostasis of phosphate, whereas in the absence of this membrane protein, it is unable to exert such regulatory effects, as demonstrated convincingly in animal models. Several factors, including phosphate and vitamin D, can regulate the production of both FGF23 and Klotho and influence their functions. In various acquired and genetic human diseases, dysregulation of FGF23 and Klotho is associated with vascular and skeletal anomalies owing to altered phosphate turnover. In this Review, I summarize how the endocrine effects of bone-derived FGF23, in coordination with Klotho, can regulate systemic phosphate homeostasis, and how an inadequate balance of these molecules can lead to complications that are caused by abnormal mineral ion metabolism.

Key Points

  • FGF23 is a bone-derived growth factor that can influence the homeostasis of phosphate and vitamin D

  • Systemic regulation of phosphate homeostasis by FGF23 is dependent on the activity of the membrane protein Klotho

  • Determination of serum FGF23 levels might improve the diagnosis and prognosis of various diseases associated with abnormal mineral ion metabolism, including tumor-induced osteomalacia and chronic kidney diseases

  • Restoration of normal FGF23 activity, by targeting FGF23 or Klotho, might have therapeutic benefits in diseases associated with abnormal mineral ion metabolism

  • Hyperphosphatemia might have more serious consequences in both skeletal and nonskeletal tissues than usually appreciated

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Serum phosphate lowering effects of FGF23.
Figure 2: Gross features, survival and serum FGF23 levels in Kl-knockout mice.
Figure 3: Renal expression of NaPi-2a and serum levels of phosphate in Kl-knockout mice.
Figure 4: The endocrine effects of vitamin D on phosphate metabolism.

Similar content being viewed by others

References

  1. Rastegar, A. New concepts in pathogenesis of renal hypophosphatemic syndromes. Iran J. Kidney Dis. 3, 1–6 (2009).

    PubMed  Google Scholar 

  2. Gaasbeek, A. & Meinders, A. E. Hypophosphatemia: an update on its etiology and treatment. Am. J. Med. 118, 1094–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Berndt, T. & Kumar, R. Phosphatonins and the regulation of phosphate homeostasis. Annu. Rev. Physiol. 69, 341–359 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Imel, E. A. & Econs, M. J. Fibroblast growth factor 23: roles in health and disease. J. Am. Soc. Nephrol. 16, 2565–2575 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Quarles, L. D. Endocrine functions of bone in mineral metabolism regulation. J. Clin. Invest. 118, 3820–3828 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rowe, P. S. The wrickkened pathways of FGF23, MEPE and PHEX. Crit. Rev. Oral Biol. Med. 15, 264–281 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Drezner, M. in Principles in Bone Biology (eds Bilezikian, J., Raisz, L. & Rodan, G.) 321–338 (Academic Press, New York, 2002).

    Google Scholar 

  8. Miyamoto, K., Ito, M., Tatsumi, S., Kuwahata, M. & Segawa, H. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am. J. Nephrol 27, 503–515 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Razzaque, M. S. & Taguchi, T. Cellular and molecular events leading to renal tubulointerstitial fibrosis. Med. Electron Microsc. 35, 68–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Razzaque, M. S. Does renal ageing affect survival? Ageing Res. Rev. 6, 211–222 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Taguchi, T. & Razzaque, M. S. The collagen-specific molecular chaperone HSP47: is there a role in fibrosis? Trends Mol. Med. 13, 45–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Berndt, T. et al. Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc. Natl Acad. Sci. USA 104, 11085–11090 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Murer, H., Hernando, N., Forster, I. & Biber, J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol. Rev. 80, 1373–1409 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Faroqui, S., Levi, M., Soleimani, M. & Amlal, H. Estrogen downregulates the proximal tubule type IIa sodium phosphate cotransporter causing phosphate wasting and hypophosphatemia. Kidney Int. 73, 1141–1150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Forster, I. C., Hernando, N., Biber, J. & Murer, H. Proximal tubular handling of phosphate: A molecular perspective. Kidney Int. 70, 1548–1559 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka, S. Signaling axis in osteoclast biology and therapeutic targeting in the RANKL/RANK/OPG system. Am. J. Nephrol. 27, 466–478 (2007).

    Article  PubMed  Google Scholar 

  17. Capuano, P. et al. Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1alphaOHase-deficient mice. Am. J. Physiol. Cell Physiol. 288, C429–C434 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Nabeshima, Y. & Imura, H. alpha-Klotho: a regulator that integrates calcium homeostasis. Am. J. Nephrol. 28, 455–464 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Razzaque, M. S. Klotho and Na+, K+-ATPase activity: solving the calcium metabolism dilemma? Nephrol. Dial. Transplant. 23, 459–461 (2008).

    Article  PubMed  Google Scholar 

  20. Imura, A. et al. alpha-Klotho as a regulator of calcium homeostasis. Science 316, 1615–1618 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Yamashita, T., Yoshioka, M. & Itoh, N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem. Biophys. Res. Commun. 277, 494–498 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348 (2000).

  23. Berndt, T. J. et al. Biological activity of FGF-23 fragments. Pflugers Arch. 454, 615–623 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19, 429–435 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Ben-Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 117, 4003–4008 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Krajisnik, T. et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J. Endocrinol. 195, 125–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Bai, X., Miao, D., Li, J., Goltzman, D. & Karaplis, A. C. Transgenic mice overexpressing human fibroblast growth factor 23(R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology 145, 5269–5279 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Shimada, T. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 113, 561–568 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Larsson, T. et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 145, 3087–3094 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. DeLuca, S. et al. Amelioration of the premature aging-like features of Fgf-23 knockout mice by genetically restoring the systemic actions of FGF-23. J. Pathol. 216, 345–355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jonsson, K. B. et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N. Engl. J. Med. 348, 1656–1663 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Hafner, C. et al. Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi. J. Clin. Invest. 116, 2201–2207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoffman, W. H., Jueppner, H. W., Deyoung, B. R., O'Dorisio, M. S. & Given, K. S. Elevated fibroblast growth factor-23 in hypophosphatemic linear nevus sebaceous syndrome. Am. J. Med. Genet. A 134, 233–236 (2005).

    Article  PubMed  Google Scholar 

  34. Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Riminucci, M. et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J. Clin. Invest. 112, 683–692 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farrow, E. G. et al. Extended mutational analyses of FGFR1 in osteoglophonic dysplasia. Am. J. Med. Genet. A 140, 537–539 (2006).

    Article  PubMed  CAS  Google Scholar 

  37. Lorenz-Depiereux, B. et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat. Genet. 38, 1248–1250 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, S. et al. Pathogenic role of Fgf23 in Dmp1-null mice. Am. J. Physiol. Endocrinol. Metab. 295, E254–E261 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Benet-Pagès, A., Orlik, P., Strom, T. M. & Lorenz-Depiereux, B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum. Mol. Genet. 14, 385–390 (2005).

    Article  PubMed  CAS  Google Scholar 

  40. Frishberg, Y. et al. Identification of a recurrent mutation in GALNT3 demonstrates that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis are allelic disorders. J. Mol. Med. 83, 33–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Garringer, H. J. et al. The role of mutant UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetylgalactosaminyltransferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral calcinosis. J. Clin. Endocrinol. Metab. 91, 4037–4042 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Ichikawa, S. et al. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (Fgf23) concentrations and hyperphosphatemia despite increased Fgf23 expression. Endocrinology 150, 2543–2550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Razzaque, M. S. Does FGF23 toxicity influence the outcome of chronic kidney disease? Nephrol. Dial. Transplant 24, 4–7 (2009).

    Article  PubMed  Google Scholar 

  44. Imel, E. A. et al. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia. J. Clin. Endocrinol. Metab. 91, 2055–2061 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Fukagawa, M., Nii-Kono, T. & Kazama, J. J. Role of fibroblast growth factor 23 in health and in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 14, 325–329 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Imanishi, Y. et al. FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int. 65, 1943–1946 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Ferrari, S. L., Bonjour, J. P. & Rizzoli, R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J. Clin. Endocrinol. Metab. 90, 1519–1524 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Nishi, H. et al. Intravenous calcitriol therapy increases serum concentrations of fibroblast growth factor-23 in dialysis patients with secondary hyperparathyroidism. Nephron Clin. Pract. 101, c94–c99 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Saito, H. et al. Circulating FGF-23 is regulated by 1alpha, 25-dihydroxyvitamin D3 and phosphorus in vivo. J. Biol. Chem. 280, 2543–2549 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, S. et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J. Am. Soc. Nephrol. 17, 1305–1315 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Shigematsu, T. et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am. J. Kidney Dis. 44, 250–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Gutierrez, O. et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J. Am. Soc. Nephrol. 16, 2205–2215 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Felsenfeld, A. J., Rodríguez, M. & Aguilera-Tejero, E. Dynamics of parathyroid hormone secretion in health and secondary hyperparathyroidism. Clin. J. Am. Soc. Nephrol. 2, 1283–1305 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Nakanishi, S. et al. Serum fibroblast growth factor-23 levels predict the future refractory hyperparathyroidism in dialysis patients. Kidney Int. 67, 1171–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Kawata, T. et al. Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J. Am. Soc. Nephrol. 18, 2683–2688 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Saji, F. et al. Regulation of fibroblast growth factor 23 production in bone in uremic rats. Nephron Physiol. 111, p59–p66 (2009).

    Article  PubMed  CAS  Google Scholar 

  57. Gutiérrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fliser, D. et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J. Am. Soc. Nephrol. 18, 2600–2608 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Hsu, H. J. & Wu, M. S. Fibroblast growth factor 23: a possible cause of left ventricular hypertrophy in hemodialysis patients. Am. J. Med. Sci. 337, 116–122 (2009).

    Article  PubMed  Google Scholar 

  60. Gutiérrez, O. M. et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119, 2545–2552 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Takeshita, K. et al. Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation 109, 1776–1782 (2004).

    Article  PubMed  Google Scholar 

  62. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Matsumura, Y. et al. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem. Biophys. Res. Commun. 242, 626–630 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Shiraki-Iida, T. et al. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett. 424, 6–10 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Ohyama, Y. et al. Molecular cloning of rat klotho cDNA: markedly decreased expression of klotho by acute inflammatory stress. Biochem. Biophys. Res. Commun. 251, 920–925 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Chen, C. D., Podvin, S., Gillespie, E., Leeman, S. E. & Abraham, C. R. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc. Natl Acad. Sci. USA 104, 19796–19801 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kurosu, H. et al. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem. 281, 6120–6123 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Nakatani, T. et al. In vivo genetic evidence of klotho-dependent functions of FGF23 in regulation of systemic phosphate homeostasis. FASEB J. 23, 433–441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Razzaque, M. S. & Lanske, B. Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice. Trends Mol. Med. 12, 298–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Urakawa, I. et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Lanske, B. & Razzaque, M. S. Premature aging in klotho mutant mice: cause or consequence? Ageing Res. Rev. 6, 73–79 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Eswarakumar, V. P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Mohammadi, M., Olsen, S. K. & Ibrahimi, O. A. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 16, 107–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Gattineni, J. et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am. J. Physiol. Renal Physiol. 297, F282–F291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu, S., Vierthaler, L., Tang, W., Zhou, J. & Quarles, L. D. FGFR3 and FGFR4 do not mediate renal effects of FGF23. J. Am. Soc. Nephrol. 19, 2342–2350 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yamazaki, Y. et al. Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J. Bone Miner. Res. 23, 1509–1518 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Medici, D. et al. FGF-23-Klotho signaling stimulates proliferation and prevents vitamin D-induced apoptosis. J. Cell Biol. 182, 459–465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Farrow, E. G., Davis, S. I., Summers, L. J. & White, K. E. Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J. Am. Soc. Nephrol. 20, 955–960 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakatani, T., Ohnishi, M. & Razzaque, M. S. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model. FASEB J. doi:10.1096/fj.08-123992.

  80. Razzaque, M. S. FGF23-mediated regulation of systemic phosphate homeostasis: is Klotho an essential player? Am. J. Physiol. Renal Physiol. 296, F470–F476 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Razzaque, M. S. & Lanske, B. The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis. J. Endocrinol. 194, 1–10 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bai, X., Dinghong, Q., Miao, D., Goltzman, D. & Karaplis, A. C. Klotho ablation converts the biochemical and skeletal alterations in FGF23 (R176Q) transgenic mice to a Klotho-deficient phenotype. Am. J. Physiol. Endocrinol. Metab. 296, E79–E88 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Ichikawa, S. et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J. Clin. Invest. 117, 2684–2691 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, H. et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J. Bone Miner. Res. 23, 939–948 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Yu, X. et al. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23. Endocrinology 146, 4647–4656 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Wolf, M. et al. Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int. 72, 1004–1013 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Aono, Y. et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J. Bone Miner. Res. doi:10.1359/jbmr.090509.

  88. Kusano, K., Saito, H., Segawa, H., Fukushima, N. & Miyamoto, K. Mutant FGF23 prevents the progression of chronic kidney disease but aggravates renal osteodystrophy in uremic rats. J. Nutr. Sci. Vitaminol. (Tokyo) 55, 99–105 (2009).

    Article  CAS  Google Scholar 

  89. Razzaque, M. S., Sitara, D., Taguchi, T., St-Arnaud, R. & Lanske, B. Premature ageing-like phenotype in fibroblast growth factor 23 null mice is a vitamin-D mediated process. FASEB J. 20, 720–722 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Ohnishi, M., Nakatani, T., Lanske, B. & Razzaque, M. S. Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1alpha-hydroxylase. Kidney Int. 75, 1166–1172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Masi, L. et al. A novel recessive mutation of fibroblast growth factor-23 in tumoral calcinosis. J. Bone Joint Surg. Am. 91, 1190–1198 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Lammoglia, J. J. & Mericq, V. Familial tumoral calcinosis caused by a novel FGF23 mutation: response to induction of tubular renal acidosis with acetazolamide and the non-calcium phosphate binder sevelamer. Horm. Res. 71, 178–184 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Bhan, I. et al. Post-transplant hypophosphatemia: Tertiary 'Hyper-Phosphatoninism'? Kidney Int. 70, 1486–1494 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Inaba, M. et al. Role of fibroblast growth factor-23 in peripheral vascular calcification in non-diabetic and diabetic hemodialysis patients. Osteoporos. Int. 17, 1506–1513 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Stompór, T. An overview of the pathophysiology of vascular calcification in chronic kidney disease. Perit. Dial. Int. 27 (Suppl. 2), S215–S222 (2007).

    PubMed  Google Scholar 

  96. DeLoach, S. S. & Berns, J. S. Arterial stiffness and vascular calcification in dialysis patients: new measures of cardiovascular risk. Semin. Dial. 20, 477–479 (2007).

    Article  PubMed  Google Scholar 

  97. Negri, A. FGF23 in chronic kidney disease and kidney post-transplant patients [Spanish]. Nefrologia 29, 196–202 (2009).

    PubMed  Google Scholar 

  98. Ibrahim, S. & Rashed, L. Serum fibroblast growth factor-23 levels in chronic haemodialysis patients. Int. Urol. Nephrol. 41, 163–169 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Razzaque, M. S. Can fibroblast growth factor 23 fine-tune therapies for diseases of abnormal mineral ion metabolism? Nat. Clin. Pract. Endocrinol. Metab. 3, 788–789 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks T. Nakatani and M. Ohnishi (Harvard School of Dental Medicine, Boston) for technical assistance and T. Taguchi (Nagasaki University, Japan) for continued help and encouragement. Some of the original research that formed the basis of this Review is supported by a grant (R01-DK077276 to M.S.R.) from the National Institute of Diabetes and Digestive and Kidney Diseases, and institutional support from Nagasaki University School of Biomedical Science and Harvard School of Dental Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shawkat Razzaque.

Ethics declarations

Competing interests

The author is a member of the speakers bureau for Genzyme and Kyowa Hakko Kirin Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razzaque, M. The FGF23–Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 5, 611–619 (2009). https://doi.org/10.1038/nrendo.2009.196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing