Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transplantation of adipose tissue and stem cells: role in metabolism and disease

Abstract

Humans and other mammals have three main adipose tissue depots: visceral white adipose tissue, subcutaneous white adipose tissue and brown adipose tissue, each of which possesses unique cell-autonomous properties. In contrast to visceral adipose tissue, which can induce detrimental metabolic effects, subcutaneous white adipose tissue and brown adipose tissue have the potential to benefit metabolism by improving glucose homeostasis and increasing energy consumption. In addition, adipose tissue contains adipose-derived stem cells, which possess the ability to differentiate into multiple lineages, a property that might be of value for the repair or replacement of various damaged cell types. Adipose tissue transplantation has primarily been used as a tool to study physiology and for human reconstructive surgery. Transplantation of adipose tissue is, however, now being explored as a possible tool to promote the beneficial metabolic effects of subcutaneous white adipose tissue and brown adipose tissue, as well as adipose-derived stem cells. Ultimately, the clinical applicability of adipose tissue transplantation for the treatment of obesity and metabolic disorders will reside in the achievable level of safety, reliability and efficacy compared with other treatments.

Key Points

  • Mammals have three main metabolically active adipose tissue depots: white subcutaneous adipose tissue, white visceral adipose tissue and brown adipose tissue, located primarily in the neck, mediastinum and interscapular areas

  • Visceral white adipose tissue is associated with insulin resistance and diabetes mellitus, whereas subcutaneous white and brown adipose tissue have intrinsic beneficial metabolic properties

  • The goal of adipose tissue transplantation has evolved from the early uses for reconstructive surgery to the study of adipocyte biology, and now, as a potential tool to improve metabolism

  • Adipose-derived stem cells can give rise to several cell lineages and could be of value for the repair or regeneration of various cell types and for the treatment of diseases

  • Current research is investigating various approaches of adipose tissue transplantation, including new sources of adipocyte progenitors, novel approaches to ex vivo engineering and manipulations to achieve a desired cell type

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adipose tissue in humans.
Figure 2: Adipose tissue depots and transplantation of subcutaneous adipose tissue in mice.
Figure 3: Potential transplantation of adipocyte progenitors to improve metabolic effects.

Similar content being viewed by others

References

  1. Carey, V. J. et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses' Health Study. Am. J. Epidemiol. 145, 614–619 (1997).

    CAS  PubMed  Google Scholar 

  2. Wang, Y., Rimm, E. B., Stampfer, M. J., Willett, W. C. & Hu, F. B. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am. J. Clin. Nutr. 81, 555–563 (2005).

    CAS  PubMed  Google Scholar 

  3. Zhang, C., Rexrode, K. M., van Dam, R. M., Li, T. Y. & Hu, F. B. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation 117, 1658–1667 (2008).

    PubMed  Google Scholar 

  4. Baik, I. et al. Adiposity and mortality in men. Am. J. Epidemiol. 152, 264–271 (2000).

    CAS  PubMed  Google Scholar 

  5. Pischon, T. et al. General and abdominal adiposity and risk of death in Europe. N. Engl. J. Med. 359, 2105–2120 (2008).

    CAS  PubMed  Google Scholar 

  6. Thorne, A., Lonnqvist, F., Apelman, J., Hellers, G. & Arner, P. A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int. J. Obes. Relat. Metab. Disord. 26, 193–199 (2002).

    CAS  PubMed  Google Scholar 

  7. Liszka, T. G., Dellon, A. L., Im, M., Angel, M. F. & Plotnick, L. Effect of lipectomy on growth and development of hyperinsulinemia and hyperlipidemia in the Zucker rat. Plast. Reconstr. Surg. 102, 1122–1127 (1998).

    CAS  PubMed  Google Scholar 

  8. Huffman, D. M. & Barzilai, N. Role of visceral adipose tissue in aging. Biochim. Biophys. Acta 1790, 1117–1123 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lottati, M., Kolka, C. M., Stefanovski, D., Kirkman, E. L. & Bergman, R. N. Greater omentectomy improves insulin sensitivity in nonobese dogs. Obesity 17, 674–680 (2009).

    PubMed  Google Scholar 

  10. Muzumdar, R. et al. Visceral adipose tissue modulates mammalian longevity. Aging Cell 7, 438–440 (2008).

    CAS  PubMed  Google Scholar 

  11. Misra, A. et al. Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men. Obes. Res. 5, 93–99 (1997).

    CAS  PubMed  Google Scholar 

  12. Snijder, M. B. et al. Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study. Am. J. Clin. Nutr. 77, 1192–1197 (2003).

    CAS  PubMed  Google Scholar 

  13. Stolic, M. et al. Glucose uptake and insulin action in human adipose tissue--influence of BMI, anatomical depot and body fat distribution. Int. J. Obes. Relat. Metab. Disord. 26, 17–23 (2002).

    CAS  PubMed  Google Scholar 

  14. Tanko, L. B., Bagger, Y. Z., Alexandersen, P., Larsen, P. J. & Christiansen, C. Peripheral adiposity exhibits an independent dominant antiatherogenic effect in elderly women. Circulation 107, 1626–1631 (2003).

    PubMed  Google Scholar 

  15. Klein, S. et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N. Engl. J. Med. 350, 2549–2557 (2004).

    CAS  PubMed  Google Scholar 

  16. Ybarra, J. et al. The effects of liposuction removal of subcutaneous abdominal fat on lipid metabolism are independent of insulin sensitivity in normal-overweight individuals. Obes. Surg. 18, 408–414 (2008).

    CAS  PubMed  Google Scholar 

  17. Tchkonia, T. et al. Fat depot-specific characteristics are retained in strains derived from single human preadipocytes. Diabetes 55, 2571–2578 (2006).

    CAS  PubMed  Google Scholar 

  18. Tchkonia, T. et al. Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am. J. Physiol. Endocrinol. Metab. 292, E298–E307 (2007).

    CAS  PubMed  Google Scholar 

  19. Meek, S. E., Nair, K. S. & Jensen, M. D. Insulin regulation of regional free fatty acid metabolism. Diabetes 48, 10–14 (1999).

    CAS  PubMed  Google Scholar 

  20. Lafontan, M. & Berlan, M. Do regional differences in adipocyte biology provide new pathophysiological insights? Trends Pharmacol. Sci. 24, 276–283 (2003).

    CAS  PubMed  Google Scholar 

  21. Lafontan, M. Advances in adipose tissue metabolism. Int. J. Obes. 32 (Suppl. 7), S39–S51 (2008).

    CAS  Google Scholar 

  22. Guo, Z., Hensrud, D. D., Johnson, C. M. & Jensen, M. D. Regional postprandial fatty acid metabolism in different obesity phenotypes. Diabetes 48, 1586–1592 (1999).

    CAS  PubMed  Google Scholar 

  23. Girard, J. & Lafontan, M. Impact of visceral adipose tissue on liver metabolism and insulin resistance. Part II: Visceral adipose tissue production and liver metabolism. Diabetes Metab. 34, 439–445 (2008).

    CAS  PubMed  Google Scholar 

  24. Bojesen, A. et al. The metabolic syndrome is frequent in Klinefelter's syndrome and is associated with abdominal obesity and hypogonadism. Diabetes Care 29, 1591–1598 (2006).

    PubMed  Google Scholar 

  25. Mayes, J. S. & Watson, G. H. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes. Rev. 5, 197–216 (2004).

    CAS  PubMed  Google Scholar 

  26. Macotela, Y., Boucher, J., Tran, T. T. & Kahn, C. R. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 58, 803–812 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Loomba-Albrecht, L. A. & Styne, D. M. Effect of puberty on body composition. Curr. Opin. Endocrinol. Diabetes Obes. 16, 10–15 (2009).

    CAS  PubMed  Google Scholar 

  28. Wells, J. C. Sexual dimorphism of body composition. Best Pract. Res. Clin. Endocrinol. Metab. 21, 415–430 (2007).

    PubMed  Google Scholar 

  29. Turgeon, J. L., Carr, M. C., Maki, P. M., Mendelsohn, M. E. & Wise, P. M. Complex actions of sex steroids in adipose tissue, the cardiovascular system, and brain: Insights from basic science and clinical studies. Endocr. Rev. 27, 575–605 (2006).

    CAS  PubMed  Google Scholar 

  30. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001).

    CAS  PubMed  Google Scholar 

  31. Berg, A. H., Combs, T. P., Du, X., Brownlee, M. & Scherer, P. E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947–953 (2001).

    CAS  PubMed  Google Scholar 

  32. Kubota, N. et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863–25866 (2002).

    CAS  PubMed  Google Scholar 

  33. Fujikawa, R., Ito, C., Nakashima, R., Orita, Y. & Ohashi, N. Is there any association between subcutaneous adipose tissue area and plasma total and high molecular weight adiponectin levels? Metabolism 57, 506–510 (2008).

    CAS  PubMed  Google Scholar 

  34. Nakamura, Y. et al. Visceral and subcutaneous adiposity and adiponectin in middle-aged Japanese men: the ERA JUMP study. Obesity 17, 1269–1273 (2009).

    PubMed  Google Scholar 

  35. Bluher, M. et al. Gene expression of adiponectin receptors in human visceral and subcutaneous adipose tissue is related to insulin resistance and metabolic parameters and is altered in response to physical training. Diabetes Care 30, 3110–3115 (2007).

    PubMed  Google Scholar 

  36. Kim, J. Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Steppan, C. M. & Lazar, M. A. Resistin and obesity-associated insulin resistance. Trends Endocrinol. Metab. 13, 18–23 (2002).

    CAS  PubMed  Google Scholar 

  38. Yang, Q. et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436, 356–362 (2005).

    CAS  PubMed  Google Scholar 

  39. McTernan, P. G. et al. Increased resistin gene and protein expression in human abdominal adipose tissue. J. Clin. Endocrinol. Metab. 87, 2407–2410 (2002).

    CAS  PubMed  Google Scholar 

  40. Kloting, N. et al. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab. 6, 79–87 (2007).

    PubMed  Google Scholar 

  41. Gesta, S. et al. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc. Natl Acad. Sci. USA 103, 6676–6681 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Billon, N. et al. The generation of adipocytes by the neural crest. Development 134, 2283–2292 (2007).

    CAS  PubMed  Google Scholar 

  43. Vohl, M. C. et al. A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes. Res. 12, 1217–1222 (2004).

    CAS  PubMed  Google Scholar 

  44. Yeo, G. S. et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat. Neurosci. 7, 1187–1189 (2004).

    CAS  PubMed  Google Scholar 

  45. Kloting, N. et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 4, e4699 (2009).

    PubMed  PubMed Central  Google Scholar 

  46. Caspar-Bauguil, S. et al. Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett. 579, 3487–3492 (2005).

    CAS  PubMed  Google Scholar 

  47. Caspar-Bauguil, S. et al. Weight-dependent changes of immune system in adipose tissue: importance of leptin. Exp. Cell. Res. 312, 2195–2202 (2006).

    CAS  PubMed  Google Scholar 

  48. O'Rourke, R. W. et al. Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-gamma in inflammation in human adipose tissue. Int. J. Obes. 33, 978–990 (2009).

    CAS  Google Scholar 

  49. Bruun, J. M., Lihn, A. S., Pedersen, S. B. & Richelsen, B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J. Clin. Endocrinol. Metab. 90, 2282–2289 (2005).

    CAS  PubMed  Google Scholar 

  50. Alessi, M. C. et al. Plasminogen activator inhibitor 1, transforming growth factor-beta1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes 49, 1374–1380 (2000).

    CAS  PubMed  Google Scholar 

  51. Fried, S. K., Bunkin, D. A. & Greenberg, A. S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 83, 847–850 (1998).

    CAS  PubMed  Google Scholar 

  52. Bruun, J. M. et al. Higher production of IL-8 in visceral vs. subcutaneous adipose tissue. Implication of nonadipose cells in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 286, E8–E13 (2004).

    CAS  PubMed  Google Scholar 

  53. Juge-Aubry, C. E. et al. Adipose tissue is a regulated source of interleukin-10. Cytokine 29, 270–274 (2005).

    CAS  PubMed  Google Scholar 

  54. Sewter, C. P., Blows, F., Vidal-Puig, A. & O'Rahilly, S. Regional differences in the response of human pre-adipocytes to PPARgamma and RXRalpha agonists. Diabetes 51, 718–723 (2002).

    CAS  PubMed  Google Scholar 

  55. Nakamura, T. et al. Thiazolidinedione derivative improves fat distribution and multiple risk factors in subjects with visceral fat accumulation--double-blind placebo-controlled trial. Diabetes Res. Clin. Pract. 54, 181–190 (2001).

    CAS  PubMed  Google Scholar 

  56. Walker, G. E. et al. Subcutaneous abdominal adipose tissue subcompartments: potential role in rosiglitazone effects. Obesity 16, 1983–1991 (2008).

    CAS  PubMed  Google Scholar 

  57. Kang, J. G. et al. Mechanisms of adipose tissue redistribution with rosiglitazone treatment in various adipose depots. Metabolism 59, 46–53 (2010).

    CAS  PubMed  Google Scholar 

  58. Phillips, S. A., Ciaraldi, T. P., Oh, D. K., Savu, M. K. & Henry, R. R. Adiponectin secretion and response to pioglitazone is depot dependent in cultured human adipose tissue. Am. J. Physiol. Endocrinol. Metab. 295, E842–E850 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bodles, A. M. et al. Pioglitazone increases secretion of high-molecular-weight adiponectin from adipocytes. Am. J. Physiol. Endocrinol. Metab. 291, E1100–E1105 (2006).

    CAS  PubMed  Google Scholar 

  60. Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B. & Kozak, L. P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 96, 2914–2923 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009).

    CAS  PubMed  Google Scholar 

  62. Swoap, S. J. et al. Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality. Am. J. Physiol. Heart Circ. Physiol. 294, H1581–H1588 (2008).

    CAS  PubMed  Google Scholar 

  63. Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993).

    CAS  PubMed  Google Scholar 

  64. Heaton, J. M. The distribution of brown adipose tissue in the human. J. Anat. 112, 35–39 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Garruti, G. & Ricquier, D. Analysis of uncoupling protein and its mRNA in adipose tissue deposits of adult humans. Int. J. Obes. Relat. Metab. Disord. 16, 383–390 (1992).

    CAS  PubMed  Google Scholar 

  66. Kortelainen, M. L., Pelletier, G., Ricquier, D. & Bukowiecki, L. J. Immunohistochemical detection of human brown adipose tissue uncoupling protein in an autopsy series. J. Histochem. Cytochem. 41, 759–764 (1993).

    CAS  PubMed  Google Scholar 

  67. Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    PubMed  Google Scholar 

  68. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    CAS  PubMed  Google Scholar 

  69. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    CAS  PubMed  Google Scholar 

  71. Zingaretti, M. C. et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 23, 3113–3120 (2009).

    CAS  PubMed  Google Scholar 

  72. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Oberkofler, H. et al. Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans. J. Lipid Res. 38, 2125–2133 (1997).

    CAS  PubMed  Google Scholar 

  74. Murano, I., Zingaretti, C. M. & Cinti, S. The adipose organ of Sv129 mice contains a prevalence of brown adipocytes and shows plasticity after cold exposure. Adipocytes 1, 121–130 (2005).

    Google Scholar 

  75. Cinti, S. Transdifferentiation properties of adipocytes in the adipose organ. Am. J. Physiol. Endocrinol. Metab. 297, E977–E986 (2009).

    CAS  PubMed  Google Scholar 

  76. Loncar, D. Convertible adipose tissue in mice. Cell Tissue Res. 266, 149–161 (1991).

    CAS  PubMed  Google Scholar 

  77. Cousin, B. et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 103, 931–942 (1992).

    CAS  PubMed  Google Scholar 

  78. Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Almind, K., Manieri, M., Sivitz, W. I., Cinti, S. & Kahn, C. R. Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proc. Natl Acad. Sci. USA 104, 2366–2371 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Crisan, M. et al. A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cells 26, 2425–2433 (2008).

    CAS  PubMed  Google Scholar 

  82. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Timmons, J. A. et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad. Sci. USA 104, 4401–4406 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Xue, B. et al. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J. Lipid Res. 48, 41–51 (2007).

    CAS  PubMed  Google Scholar 

  85. Sturkenboom, M. G., Franssen, E. J., Berkhof, J. & Hoekstra, O. S. Physiological uptake of [18F]fluorodeoxyglucose in the neck and upper chest region: are there predictive characteristics? Nucl. Med. Commun. 25, 1109–1111 (2004).

    PubMed  Google Scholar 

  86. Timmons, J. A. & Pedersen, B. K. The importance of brown adipose tissue. N. Engl. J. Med. 361, 415–416 (2009).

    CAS  PubMed  Google Scholar 

  87. Stefan, N., Pfannenberg, C. & Haring, H. U. The importance of brown adipose tissue. N. Engl. J. Med. 361, 416–417 (2009).

    CAS  PubMed  Google Scholar 

  88. Jacene, H. A. & Wahl, R. L. The importance of brown adipose tissue. N. Engl. J. Med. 361, 417–418 (2009).

    CAS  PubMed  Google Scholar 

  89. Lee, P., Ho, K. K. & Fulham, M. J. The importance of brown adipose tissue. N. Engl. J. Med. 361, 418 (2009).

    CAS  PubMed  Google Scholar 

  90. Neuber, F. Fetttransplantation. Bericht uber die Verhandlungen der Deutschen Gesellschaft fur Chirurgie [German]. Zentralbl. Chir. 22, 66 (1893).

    Google Scholar 

  91. Coleman, S. R. Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast. Surg. 19, 421–425 (1995).

    CAS  PubMed  Google Scholar 

  92. Hausberger, F. X. The growth and development capability of transplanted fat tissue stores in rats [German]. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 302, 640–656 (1938).

    Google Scholar 

  93. Hausberger, F. X. Quantitative studies on the development of autotransplants of immature adipose tissue of rats. Anat. Rec. 122, 507–515 (1955).

    CAS  PubMed  Google Scholar 

  94. Iyama, K., Ohzono, K. & Usuku, G. Electron microscopical studies on the genesis of white adipocytes: differentiation of immature pericytes into adipocytes in transplanted preadipose tissue. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 31, 143–155 (1979).

    CAS  PubMed  Google Scholar 

  95. Ashwell, M., Meade, C. J., Medawar, P. & Sowter, C. Adipose tissue: contributions of nature and nurture to the obesity of an obese mutant mouse (ob/ob). Proc. R. Soc. Lond. B Biol. Sci. 195, 343–353 (1977).

    CAS  PubMed  Google Scholar 

  96. Ashwell, M. & Meade, C. J. Obesity: can some fat cells enlarge while others are shrinking? Lipids 16, 475–478 (1981).

    CAS  PubMed  Google Scholar 

  97. Enser, M. & Ashwell, M. Fatty acid composition of triglycerides from adipose tissue transplanted between obese and lean mice. Lipids 18, 776–780 (1983).

    CAS  PubMed  Google Scholar 

  98. Rooks, C., Bennet, T., Bartness, T. J. & Harris, R. B. Compensation for an increase in body fat caused by donor transplants into mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R1149–R1155 (2004).

    CAS  PubMed  Google Scholar 

  99. Lacy, E. L. & Bartness, T. J. Autologous fat transplants influence compensatory white adipose tissue mass increases after lipectomy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R61–R70 (2004).

    CAS  PubMed  Google Scholar 

  100. Lacy, E. L. & Bartness, T. J. Effects of white adipose tissue grafts on total body fat and cellularity are dependent on graft type and location. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R380–R388 (2005).

    CAS  PubMed  Google Scholar 

  101. Green, H. & Kehinde, O. Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line. J. Cell. Physiol. 101, 169–171 (1979).

    CAS  PubMed  Google Scholar 

  102. Mandrup, S., Loftus, T. M., MacDougald, O. A., Kuhajda, F. P. & Lane, M. D. Obese gene expression at in vivo levels by fat pads derived from s.c. implanted 3T3-F442A preadipocytes. Proc. Natl Acad. Sci. USA 94, 4300–4305 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gaillard, D., Poli, P. & Negrel, R. Characterization of ouabain-resistant mutants of the preadipocyte Ob17 clonal line. Adipose conversion in vitro and in vivo. Exp. Cell Res. 156, 513–527 (1985).

    CAS  PubMed  Google Scholar 

  104. Fukumura, D. et al. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ. Res. 93, e88–e97 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kawaguchi, N. et al. Reconstituted basement membrane potentiates in vivo adipogenesis of 3T3-F442A cells. Cytotechnology 31, 215–220 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Fischbach, C. et al. Generation of mature fat pads in vitro and in vivo utilizing 3-D long-term culture of 3T3-L1 preadipocytes. Exp. Cell Res. 300, 54–64 (2004).

    CAS  PubMed  Google Scholar 

  107. Shibasaki, M. et al. Alterations of insulin sensitivity by the implantation of 3T3-L1 cells in nude mice. A role for TNF-alpha? Diabetologia 45, 518–526 (2002).

    CAS  PubMed  Google Scholar 

  108. Tavassoli, M. In vivo development of adipose tissue following implantation of lipid-depleted cultured adipocyte. Exp. Cell Res. 137, 55–62 (1982).

    CAS  PubMed  Google Scholar 

  109. Van, R. L. & Roncari, D. A. Complete differentiation in vivo of implanted cultured adipocyte precursors from adult rats. Cell Tissue Res. 225, 557–566 (1982).

    CAS  PubMed  Google Scholar 

  110. Rieck, B. & Schlaak, S. In vivo tracking of rat preadipocytes after autologous transplantation. Ann. Plast. Surg. 51, 294–300 (2003).

    PubMed  Google Scholar 

  111. Mizuno, H. et al. In vivo adipose tissue regeneration by adipose-derived stromal cells isolated from GFP transgenic mice. Cells Tissues Organs 187, 177–185 (2008).

    PubMed  Google Scholar 

  112. Guo, K., Mogen, J., Struzzi, S. & Zhang, Y. Preadipocyte transplantation: an in vivo study of direct leptin signaling on adipocyte morphogenesis and cell size. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1339–R1347 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yagi, K., Kondo, D., Okazaki, Y. & Kano, K. A novel preadipocyte cell line established from mouse adult mature adipocytes. Biochem. Biophys. Res. Commun. 321, 967–974 (2004).

    CAS  PubMed  Google Scholar 

  114. Rieck, B. & Schlaak, S. Measurement in vivo of the survival rate in autologous adipocyte transplantation. Plast. Reconstr. Surg. 111, 2315–2323 (2003).

    PubMed  Google Scholar 

  115. Dellagiacoma, G. et al. Brown adipose tissue: magnetic resonance imaging and ultrastructural studies after transplantation in syngeneic rats. Transplant. Proc. 24, 2986 (1992).

    CAS  PubMed  Google Scholar 

  116. Smahel, J. Experimental implantation of adipose tissue fragments. Br. J. Plast. Surg. 42, 207–211 (1989).

    CAS  PubMed  Google Scholar 

  117. Nechad, M. & Olson, L. Development of interscapular brown adipose tissue in the hamster. II - Differentiation of transplants in the anterior chamber of the eye: role of the sympathetic innervation. Biol. Cell 48, 167–174 (1983).

    CAS  PubMed  Google Scholar 

  118. Ferren, L. Morphological differentiation of implanted brown and white fats. Trans. Kans. Acad. Sci. 69, 350–353 (1966).

    CAS  PubMed  Google Scholar 

  119. Ashwell, M., Wells, C. & Dunnett, S. B. Brown adipose tissue: contributions of nature and nurture to the obesity of an obese mutant mouse (ob/ob). Int. J. Obes. 10, 355–373 (1986).

    CAS  PubMed  Google Scholar 

  120. Roberts, J. L., Ashwell, M. & Enser, M. Brown adipose tissue triacylglycerol fatty acids of obese and lean mice: in situ and in transplants. Lipids 21, 195–201 (1986).

    CAS  PubMed  Google Scholar 

  121. Garg, A. & Agarwal, A. K. Lipodystrophies: disorders of adipose tissue biology. Biochim. Biophys. Acta 1791, 507–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gavrilova, O. et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J. Clin. Invest. 105, 271–278 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kim, J. K. et al. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J. Biol. Chem. 275, 8456–8460 (2000).

    CAS  PubMed  Google Scholar 

  124. Colombo, C. et al. Transplantation of adipose tissue lacking leptin is unable to reverse the metabolic abnormalities associated with lipoatrophy. Diabetes 51, 2727–2733 (2002).

    CAS  PubMed  Google Scholar 

  125. Oral, E. A. et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med. 346, 570–578 (2002).

    CAS  PubMed  Google Scholar 

  126. Loffreda, S. et al. Leptin regulates proinflammatory immune responses. FASEB J. 12, 57–65 (1998).

    CAS  PubMed  Google Scholar 

  127. Yamagishi, S. I. et al. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J. Biol. Chem. 276, 25096–25100 (2001).

    CAS  PubMed  Google Scholar 

  128. Chen, H. C., Jensen, D. R., Myers, H. M., Eckel, R. H. & Farese, R. V. Jr. Obesity resistance and enhanced glucose metabolism in mice transplanted with white adipose tissue lacking acyl CoA:diacylglycerol acyltransferase 1. J. Clin. Invest. 111, 1715–1722 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Klebanov, S., Astle, C. M., DeSimone, O., Ablamunits, V. & Harrison, D. E. Adipose tissue transplantation protects ob/ob mice from obesity, normalizes insulin sensitivity and restores fertility. J. Endocrinol. 186, 203–211 (2005).

    CAS  PubMed  Google Scholar 

  130. Sennello, J. A., Fayad, R., Pini, M., Gove, M. E. & Fantuzzi, G. Transplantation of wild-type white adipose tissue normalizes metabolic, immune and inflammatory alterations in leptin-deficient ob/ob mice. Cytokine 36, 261–266 (2006).

    CAS  PubMed  Google Scholar 

  131. Park, B. H. et al. Combined leptin actions on adipose tissue and hypothalamus are required to deplete adipocyte fat in lean rats: implications for obesity treatment. J. Biol. Chem. 281, 40283–40291 (2006).

    CAS  PubMed  Google Scholar 

  132. Konrad, D., Rudich, A. & Schoenle, E. J. Improved glucose tolerance in mice receiving intraperitoneal transplantation of normal fat tissue. Diabetologia 50, 833–839 (2007).

    CAS  PubMed  Google Scholar 

  133. Smith, U. Insulin responsiveness and lipid synthesis in human fat cells of different sizes: effect of the incubation medium. Biochim. Biophys. Acta 218, 417–423 (1970).

    CAS  PubMed  Google Scholar 

  134. Tran, T. T., Yamamoto, Y., Gesta, S. & Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hocking, S. L., Chisholm, D. J. & James, D. E. Studies of regional adipose transplantation reveal a unique and beneficial interaction between subcutaneous adipose tissue and the intra-abdominal compartment. Diabetologia 51, 900–902 (2008).

    CAS  PubMed  Google Scholar 

  136. Schulz, T. J. & Tseng, Y. H. Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev. 20, 523–531 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kajimura, S. et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460, 1154–1158 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zuk, P. A. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279–4295 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gimble, J. M., Katz, A. J. & Bunnell, B. A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100, 1249–1260 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Schaffler, A. & Buchler, C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 25, 818–827 (2007).

    PubMed  Google Scholar 

  141. Planat-Benard, V. et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109, 656–663 (2004).

    PubMed  Google Scholar 

  142. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell 135, 240–249 (2008).

    CAS  PubMed  Google Scholar 

  144. Joe, A. W., Yi, L., Even, Y., Vogl, A. W. & Rossi, F. M. Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells 27, 2563–2570 (2009).

    CAS  PubMed  Google Scholar 

  145. Izadpanah, R. et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J. Cell Biochem. 99, 1285–1297 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim, Y. et al. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol. Biochem. 20, 867–876 (2007).

    CAS  PubMed  Google Scholar 

  147. Keyser, K. A., Beagles, K. E. & Kiem, H. P. Comparison of mesenchymal stem cells from different tissues to suppress T-cell activation. Cell Transplant. 16, 555–562 (2007).

    PubMed  Google Scholar 

  148. Noel, D. et al. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp. Cell Res. 314, 1575–1584 (2008).

    CAS  PubMed  Google Scholar 

  149. Yoshimura, K. et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J. Cell Physiol. 208, 64–76 (2006).

    CAS  PubMed  Google Scholar 

  150. Yoshimura, K. et al. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast. Surg. 32, 48–55 (2008).

    PubMed  Google Scholar 

  151. Garcia-Olmo, D. et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis. Colon Rectum 52, 79–86 (2009).

    PubMed  Google Scholar 

  152. Madonna, R., Geng, Y. J. & De Caterina, R. Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler. Thromb. Vasc. Biol. 29, 1723–1729 (2009).

    CAS  PubMed  Google Scholar 

  153. Jumabay, M. et al. Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. J. Mol. Cell. Cardiol. 47, 565–575 (2009).

    CAS  PubMed  Google Scholar 

  154. Vet-Stem Regenerative Veterinary Medicine [online], (2010).

  155. Djouad, F., Bouffi, C., Ghannam, S., Noel, D. & Jorgensen, C. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat. Rev. Rheumatol. 5, 392–399 (2009).

    CAS  PubMed  Google Scholar 

  156. Puissant, B. et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br. J. Haematol. 129, 118–129 (2005).

    PubMed  Google Scholar 

  157. Yanez, R. et al. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24, 2582–2591 (2006).

    CAS  PubMed  Google Scholar 

  158. Gonzalez-Rey, E. et al. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 58, 929–939 (2009).

    CAS  PubMed  Google Scholar 

  159. Kim, Y. J., Hwang, S. J., Bae, Y. C. & Jung, J. S. miR-21 regulates adipogenic differentiation through the modulation of tgf-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 27, 3093–3102 (2009).

    CAS  PubMed  Google Scholar 

  160. Carlsson, B. et al. Obese (ob) gene defects are rare in human obesity. Obes. Res. 5, 30–35 (1997).

    CAS  PubMed  Google Scholar 

  161. Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282, 1568–1575 (1999).

    CAS  PubMed  Google Scholar 

  162. Ma, S. W. & Foster, D. O. Uptake of glucose and release of fatty acids and glycerol by rat brown adipose tissue in vivo. Can. J. Physiol. Pharmacol. 64, 609–614 (1986).

    CAS  PubMed  Google Scholar 

  163. Morrison, S. F., Nakamura, K. & Madden, C. J. Central control of thermogenesis in mammals. Exp. Physiol. 93, 773–797 (2008).

    PubMed  PubMed Central  Google Scholar 

  164. Isler, D., Hill, H. P. & Meier, M. K. Glucose metabolism in isolated brown adipocytes under beta-adrenergic stimulation. Quantitative contribution of glucose to total thermogenesis. Biochem. J. 245, 789–793 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Nedergaard, J. & Lindberg, O. The brown fat cell. Int. Rev. Cytol. 74, 187–286 (1982).

    CAS  PubMed  Google Scholar 

  166. Rothwell, N. J. & Stock, M. J. Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin. Sci. 64, 19–23 (1983).

    CAS  Google Scholar 

  167. Rossmeisl, M. et al. Expression of the uncoupling protein 1 from the aP2 gene promoter stimulates mitochondrial biogenesis in unilocular adipocytes in vivo. Eur. J. Biochem. 269, 19–28 (2002).

    CAS  PubMed  Google Scholar 

  168. Kirkland, J. L. & Dobson, D. E. Preadipocyte function and aging: links between age-related changes in cell dynamics and altered fat tissue function. J. Am. Geriatr. Soc. 45, 959–967 (1997).

    CAS  PubMed  Google Scholar 

  169. Karagiannides, I. et al. Altered expression of C/EBP family members results in decreased adipogenesis with aging. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1772–R1780 (2001).

    CAS  PubMed  Google Scholar 

  170. Schipper, B. M., Marra, K. G., Zhang, W., Donnenberg, A. D. & Rubin, J. P. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann. Plast. Surg. 60, 538–544 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Rubio, D. et al. Spontaneous human adult stem cell transformation. Cancer Res. 65, 3035–3039 (2005).

    CAS  PubMed  Google Scholar 

  172. Mercader, J., Palou, A. & Luisa, B. M. Induction of uncoupling protein-1 in mouse embryonic fibroblast-derived adipocytes by retinoic acid. Obesity doi:10.1038/oby.2009.330.

    PubMed  Google Scholar 

  173. Scheideler, M. et al. Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics 9, 340 (2008).

    PubMed  PubMed Central  Google Scholar 

  174. Lamfers, M. et al. Homing properties of adipose-derived stem cells to intracerebral glioma and the effects of adenovirus infection. Cancer Lett. 274, 78–87 (2009).

    CAS  PubMed  Google Scholar 

  175. Hernot, S. & Klibanov, A. L. Microbubbles in ultrasound-triggered drug and gene delivery. Adv. Drug Deliv. Rev. 60, 1153–1166 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Otani, K. et al. Nonviral delivery of siRNA into mesenchymal stem cells by a combination of ultrasound and microbubbles. J. Control Release 133, 146–153 (2009).

    CAS  PubMed  Google Scholar 

  177. Lee, S. W. et al. Stem cell-mediated accelerated bone healing observed with in vivo molecular and small animal imaging technologies in a model of skeletal injury. J. Orthop. Res. 27, 295–302 (2009).

    PubMed  PubMed Central  Google Scholar 

  178. Kim, U. et al. Homing of adipose-derived stem cells to radiofrequency catheter ablated canine atrium and differentiation into cardiomyocyte-like cells. Int. J. Cardiol. doi:10.1016/j.ijcard.2009.07.016.

    PubMed  Google Scholar 

  179. Schenke-Layland, K. et al. Adipose tissue-derived cells improve cardiac function following myocardial infarction. J. Surg. Res. 153, 217–223 (2009).

    CAS  PubMed  Google Scholar 

  180. Tan, H. et al. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 30, 6844–6853 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Choi, Y. S., Park, S. N. & Suh, H. Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials 26, 5855–5863 (2005).

    CAS  PubMed  Google Scholar 

  182. Itoi, Y., Takatori, M., Hyakusoku, H. & Mizuno, H. Comparison of readily available scaffolds for adipose tissue engineering using adipose-derived stem cells. J. Plast. Reconstr. Aesthet. Surg. doi:10.1016/j.bjps.2009.01.069.

    Google Scholar 

  183. Rehman, J. et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109, 1292–1298 (2004).

    PubMed  Google Scholar 

  184. Yi, C. G. et al. VEGF gene therapy for the survival of transplanted fat tissue in nude mice. J. Plast. Reconstr. Aesthet. Surg. 60, 272–278 (2007).

    CAS  PubMed  Google Scholar 

  185. Zhu, X. Y. et al. Transplantation of adipose-derived stem cells overexpressing hHGF into cardiac tissue. Biochem. Biophys. Res. Commun. 379, 1084–1090 (2009).

    CAS  PubMed  Google Scholar 

  186. Bhang, S. H. et al. Locally delivered growth factor enhances the angiogenic efficacy of adipose-derived stromal cells transplanted to ischemic limbs. Stem Cells 27, 1976–1986 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Craft, R. O. et al. Effect of local, long-term delivery of platelet-derived growth factor (PDGF) on injected fat graft survival in severe combined immunodeficient (SCID) mice. J. Plast. Reconstr. Aesthet. Surg. 62, 235–243 (2009).

    PubMed  Google Scholar 

  188. Shoshani, O. et al. The effect of interleukin-8 on the viability of injected adipose tissue in nude mice. Plast. Reconstr. Surg. 115, 853–859 (2005).

    CAS  PubMed  Google Scholar 

  189. Kuramochi, D. et al. Matrix metalloproteinase 2 improves the transplanted adipocyte survival in mice. Eur. J. Clin. Invest. 38, 752–759 (2008).

    CAS  PubMed  Google Scholar 

  190. Samdal, F., Skolleborg, K. C. & Berthelsen, B. The effect of preoperative needle abrasion of the recipient site on survival of autologous free fat grafts in rats. Scand. J. Plast. Reconstr. Surg. Hand Surg. 26, 33–36 (1992).

    CAS  PubMed  Google Scholar 

  191. Elabd, C. et al. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27, 2753–2760 (2009).

    CAS  PubMed  Google Scholar 

  192. Menasche, P. et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117, 1189–1200 (2008).

    PubMed  Google Scholar 

  193. Yousef, M. et al. The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 53, 2262–2269 (2009).

    PubMed  Google Scholar 

  194. Beitnes, J. O. et al. Long term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction. The ASTAMI randomized, controlled study. Heart 95, 1983–1989 (2009).

    CAS  PubMed  Google Scholar 

  195. Meyer, G. P. et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113, 1287–1294 (2006).

    PubMed  Google Scholar 

  196. Bunnell, B. A., Flaat, M., Gagliardi, C., Patel, B. & Ripoll, C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45, 115–120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhang, Y. Utility of transplantation in studying adipocyte biogenesis and function. Mol. Cell. Endocrinol. doi:10.1016/j.mce.2009.08.022.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T. T. Tran is supported by NIH research grant 2 P30 DK46200-16. C. R. Kahn is supported by NIH research grant 1 R01 DK082659 and the Mary K. Iacocca Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ronald Kahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, T., Kahn, C. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol 6, 195–213 (2010). https://doi.org/10.1038/nrendo.2010.20

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.20

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing