Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Caenorhabditis elegans: an emerging genetic model for the study of innate immunity

Key Points

  • Interest in innate immunity, the first line of defence of multicellular organisms against infection, has been reawakened in recent years. The mechanisms that are involved are evolutionarily ancient, as shown by the remarkable conservation of the Toll signalling pathway between the model insect Drosophila melanogaster and mammals.

  • The nematode Caenorhabditis elegans has proved its worth as a model organism in fields such as apoptosis and nervous-system development, partly because it possesses many advantages for genetic studies (for example, rapid life cycle, self-fertilization, a large number of progeny and a large mutant collection).

  • This microscopic worm normally lives in the soil where it is in permanent competition with potentially pathogenic bacteria and fungi. But, even after its genome was sequenced, comparisons with Drosophila and other animals raised the question of whether it possesses inducible defence mechanisms against microorganisms.

  • Recently, two signalling pathways that are necessary for the resistance of worms to bacterial infection were identified — the MAPK and TGF-β pathways. Using these signalling cascades, the nematode can integrate infection-associated inputs and respond with specific effectors that contribute to better resistance. However, these pathways are also used in other contexts — for example, during development, which indicates a complex regulation of the relevant signalling cascades.

  • Despite the fact that the similarities with the known components of insect or mammalian immunity are weak, the general defence strategy (recognition, signalling, response) is conserved. So the nematode has the potential to teach us much about the evolutionary origins of immunity, and might reveal as yet uncharacterized aspects of mammalian defences against infection.

  • Importantly, a two-sided approach can be taken with C. elegans, as it can be used to investigate the virulence mechanisms of pathogens. So, with worms, the equilibrium between host and pathogen can be readily addressed.

Abstract

Invaluable insights into how animals, humans included, defend themselves against infection have been provided by more than a decade of genetic studies that have used fruitflies. In the past few years, attention has also turned to another simple animal model, the nematode worm Caenorhabditis elegans. What exactly have we learned from the work in Drosophila? And will research with C. elegans teach us anything new about our response to pathogen attack?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Toll and Imd pathways.
Figure 2: Mitogen-activated protein kinase (MAPK) signalling pathways in Caenorabditis elegans are involved in multiple processes.
Figure 3: TGF-β ligands and signalling pathways in Caenorhabditis elegans.

Similar content being viewed by others

References

  1. Hoffmann, J. A. & Reichhart, J. M. Drosophila immunity. Trends Cell. Biol. 7, 309–316 (1997).

    CAS  Google Scholar 

  2. Medzhitov, R. & Janeway, C. A. Innate immune recognition and control of adaptive immune responses. Semin. Immunol. 10, 351–353 (1998). An early review on the role of the innate immune system in the clonal selection of lymphocytes and the activation of the subsequent adaptive response.

    CAS  PubMed  Google Scholar 

  3. Barton, G. M. & Medzhitov, R. Control of adaptive immune responses by Toll-like receptors. Curr. Opin. Immunol. 14, 380–383 (2002).

    CAS  PubMed  Google Scholar 

  4. Malo, D. & Skamene, E. Genetic control of host resistance to infection. Trends Genet. 10, 365–371 (1994).

    CAS  PubMed  Google Scholar 

  5. Buer, J. & Balling, R. Mice, microbes and models of infection. Nature Rev. Genet. 4, 195–205 (2003). A recent review on the use of mice as models for the study of host–pathogen interactions.

    CAS  PubMed  Google Scholar 

  6. Vidal, S. M., Malo, D., Vogan, K., Skamene, E. & Gros, P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73, 469–485 (1993).

    CAS  PubMed  Google Scholar 

  7. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998). A genetic study that shows a role for TLR4 in LPS signalling.

    CAS  PubMed  Google Scholar 

  8. Flaswinkel, H. et al. Identification of immunological relevant phenotypes in ENU mutagenized mice. Mamm. Genome 11, 526–527 (2000).

    CAS  PubMed  Google Scholar 

  9. Miosge, L. A., Blasioli, J., Blery, M. & Goodnow, C. C. Analysis of an ethylnitrosourea-generated mouse mutation defines a cell intrinsic role of nuclear factor κB2 in regulating circulating B-cell numbers. J. Exp. Med. 196, 1113–1119 (2002). A technical tour de force, in which forward genetics in used in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999). An excellent overview that illustrates the relevance of invertebrate model systems for the understanding of mammalian immunity.

    CAS  PubMed  Google Scholar 

  11. Medzhitov, R. & Janeway, C. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000).

    CAS  PubMed  Google Scholar 

  12. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate immunity: an evolutionary perspective. Nature Immunol. 3, 121–126 (2002). An update on reference 10.

    CAS  Google Scholar 

  13. Iwanaga, S. The molecular basis of innate immunity in the horseshoe crab. Curr. Opin. Immunol. 14, 87–95 (2002).

    CAS  PubMed  Google Scholar 

  14. Lavine, M. D. & Strand, M. R. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295–1309 (2002).

    CAS  PubMed  Google Scholar 

  15. Kurz, C. L. & Ewbank, J. J. Caenorhabditis elegans for the study of host–pathogen interactions. Trends Microbiol. 8, 142–144 (2000).

    CAS  PubMed  Google Scholar 

  16. Ewbank, J. J. Tackling both sides of the host–pathogen equation with Caenorhabditis elegans. Microbes Infect. 4, 247–256 (2002). An introduction to the worm and a description of the best characterized pathogen models.

    PubMed  Google Scholar 

  17. Aballay, A. & Ausubel, F. M. Caenorhabditis elegans as a host for the study of host–pathogen interactions. Curr. Opin. Microbiol. 5, 97–101 (2002).

    CAS  PubMed  Google Scholar 

  18. Aguinaldo, A. M. et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997).

    CAS  PubMed  Google Scholar 

  19. Blair, J. E., Ikeo, K., Gojobori, T. & Hedges, S. B. The evolutionary position of nematodes. BMC Evol. Biol. 2, 7 (2002). Contradicts the conclusions of Aguinaldo et al . (reference 18) and affirms that insects are genetically and evolutionarily closer to humans than to nematode worms.

    PubMed  PubMed Central  Google Scholar 

  20. Foley, E. & O'Farrell, P. H. Nitric oxide contributes to induction of innate immune responses to Gram-negative bacteria in Drosophila. Genes Dev. 17, 115–125 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei, X. Q. et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375, 408–411 (1995).

    CAS  PubMed  Google Scholar 

  22. Sritunyalucksana, K. & Soderhall, K. The proPO and clotting system in crustaceans. Aquaculture 191, 53–69 (2000).

    CAS  Google Scholar 

  23. Nagai, T. & Kawabata, S. A link between blood coagulation and prophenol oxidase activation in arthropod host defense. J. Biol. Chem. 275, 29264–29267 (2000). On the basis of data from the horseshoe crab, the authors suggest that blood coagulation and prophenol oxidase activation might have evolved from a common ancestral protease cascade.

    CAS  PubMed  Google Scholar 

  24. Ligoxygakis, P. et al. A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO J. 21, 6330–6337 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. De Gregorio, E. et al. An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev. Cell. 3, 581–592 (2002).

    CAS  PubMed  Google Scholar 

  26. Levashina, E. A. et al. Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917–1919 (1999).

    CAS  PubMed  Google Scholar 

  27. Belvin, M. P. & Anderson, K. V. A conserved signaling pathway: the Drosophila Toll-Dorsal pathway. Annu. Rev. Cell. Dev. Biol. 12, 393–416 (1996).

    CAS  PubMed  Google Scholar 

  28. Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA 94, 14614–14619 (1997). This study clearly shows specificity at the level of effector molecules in Drosophila innate immunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rutschmann, S., Kilinc, A. & Ferrandon, D. The Toll pathway is required for resistance to Gram-positive bacterial infections in Drosophila. J. Immunol. 168, 1542–1546 (2002).

    CAS  PubMed  Google Scholar 

  30. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate immunity: an evolutionary perspective. Nature Immunol. 3, 121–126 (2002).

    CAS  Google Scholar 

  31. Tauszig, S., Jouanguy, E., Hoffmann, J. A. & Imler, J. L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl Acad. Sci. USA 97, 10520–10525 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Imler, J. L. & Hoffmann, J. A. Toll receptors in innate immunity. Trends Cell. Biol. 11, 304–311 (2001).

    CAS  PubMed  Google Scholar 

  33. Ligoxygakis, P., Bulet, P. & Reichhart, J. M. Critical evaluation of the role of the Toll-like receptor 18-wheeler in the host defense of Drosophila. EMBO Rep. 3, 666–673 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pujol, N. et al. A reverse genetic analysis of components of the Toll signalling pathway in Caenorhabditis elegans. Curr. Biol. 11, 809–821 (2001).

    CAS  PubMed  Google Scholar 

  35. Jansen, G., Hazendonk, E., Thijssen, K. L. & Plasterk, R. H. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nature Genet. 17, 119–121 (1997).

    CAS  PubMed  Google Scholar 

  36. Liu, L. X. et al. High-throughput isolation of Caenorhabditis elegans deletion mutants. Genome Res. 9, 859–867 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Aballay, A., Drenkard, E., Hilbun, L. R. & Ausubel, F. M. Caenorhabditis elegans innate immune response triggered by Salmonella enterica requires intact LPS and is mediated by a MAPK signaling pathway. Curr. Biol. 13, 47–52 (2003). An elegant example of the two-sided approach that can be taken using worms.

    CAS  PubMed  Google Scholar 

  38. Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl Acad. Sci. USA 92, 9465–9469 (1995). Early evidence to show that Drosophila distinguishes bacterial from fungal infection, with the first description of the imd gene.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Georgel, P. et al. Drosophila immune deficiency (imd) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell. 1, 503–514 (2001).

    CAS  PubMed  Google Scholar 

  40. Choe, K. M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K. V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359–362 (2002).

    CAS  PubMed  Google Scholar 

  41. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002).

    CAS  PubMed  Google Scholar 

  42. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R. A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002).

    CAS  PubMed  Google Scholar 

  43. Shin, T. H. et al. MOM-4, a MAP kinase kinase kinase-related protein, activates WRM-1/LIT-1 kinase to transduce anterior/posterior polarity signals in C. elegans. Mol. Cell. 4, 275–280 (1999).

    CAS  PubMed  Google Scholar 

  44. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996). With more than 500 citations, this classic paper is still highly useful.

    CAS  PubMed  Google Scholar 

  45. Tzou, P., Reichhart, J. M. & Lemaitre, B. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc. Natl Acad. Sci. USA 99, 2152–2157 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kato, Y. & Komatsu, S. ASABF, a novel cysteine-rich antibacterial peptide isolated from the nematode Ascaris suum: purification, primary structure, and molecular cloning of cDNA. J. Biol. Chem. 271, 30493–30498 (1996).

    CAS  PubMed  Google Scholar 

  47. Kato, Y. et al. abf-1 and abf-2, ASABF-type antimicrobial peptide genes in Caenorhabditis elegans. Biochem. J. 361, 221–230 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Uttenweiler-Joseph, S. et al. Differential display of peptides induced during the immune response of Drosophila: a matrix-assisted laser desorption ionization time-of-flight mass spectrometry study. Proc. Natl Acad. Sci. USA 95, 11342–11347 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Irving, P. et al. A genome-wide analysis of immune responses in Drosophila. Proc. Natl Acad. Sci. USA 98, 15119–15124 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. De Gregorio, E., Spellman, P. T., Rubin, G. M. & Lemaitre, B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl Acad. Sci. USA 98, 12590–12595 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. De Gregorio, E., Spellman, P. T., Tzou, P., Rubin, G. M. & Lemaitre, B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568–2579 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jorgensen, E. M. & Mango, S. E. The art and design of genetic screens: Caenorhabditis elegans. Nature Rev. Genet. 3, 356–369 (2002). A lucid review on the use of C. elegans as a genetic model.

    CAS  PubMed  Google Scholar 

  53. Mahajan-Miklos, S., Tan, M. W., Rahme, L. G. & Ausubel, F. M. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell 96, 47–56 (1999). A landmark paper that established worms as a model host.

    CAS  PubMed  Google Scholar 

  54. Kurz, C. L. et al. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J. 22, 1451–1460 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tan, M. W., Mahajan-Miklos, S. & Ausubel, F. M. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl Acad. Sci. USA 96, 715–720 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, D. H. et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297, 623–626 (2002). Genetic evidence for a role of MAPK signalling in worm defences.

    CAS  PubMed  Google Scholar 

  57. Sagasti, A. et al. The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell 105, 221–232 (2001).

    CAS  PubMed  Google Scholar 

  58. Tanaka-Hino, M. et al. SEK-1 MAPKK mediates Ca2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans. EMBO Rep. 3, 56–62 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Aballay, A. & Ausubel, F. M. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc. Natl Acad. Sci. USA 98, 2735–2739 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bargmann, C. & Hodgkin, J. Accolade for elegans. Cell 111, 759–762 (2002). An entertaining historical view of the worm and the C. elegans community.

    CAS  PubMed  Google Scholar 

  61. Aballay, A., Yorgey, P. & Ausubel, F. M. Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr. Biol. 10, 1539–1542 (2000).

    CAS  PubMed  Google Scholar 

  62. Labrousse, A., Chauvet, S., Couillault, C., Kurz, C. L. & Ewbank, J. J. Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr. Biol. 10, 1543–1545 (2000).

    CAS  PubMed  Google Scholar 

  63. Tan, M. W. & Ausubel, F. M. Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr. Opin. Microbiol. 3, 29–34 (2000).

    CAS  PubMed  Google Scholar 

  64. Garsin, D. A. et al. A simple model host for identifying Gram-positive virulence factors. Proc. Natl Acad. Sci. USA 98, 10892–10897 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gan, Y. H. et al. Characterization of Burkholderia pseudomallei infection and identification of novel virulence factors using a Caenorhabditis elegans host system. Mol. Microbiol. 44, 1185–1197 (2002).

    CAS  PubMed  Google Scholar 

  66. Darby, C., Hsu, J. W., Ghori, N. & Falkow, S. Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417, 243–244 (2002).

    CAS  PubMed  Google Scholar 

  67. Couillault, C. & Ewbank, J. J. Diverse bacteria are pathogens of Caenorhabditis elegans. Infect. Immun. 70, 4705–4707 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tran, H. et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296, 530–534 (2002).

    CAS  PubMed  Google Scholar 

  69. Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2002).

    PubMed  Google Scholar 

  70. Scott, B. A., Avidan, M. S. & Crowder, C. M. Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296, 2388–2391 (2002).

    CAS  PubMed  Google Scholar 

  71. Barsyte, D., Lovejoy, D. A. & Lithgow, G. J. Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J. 15, 627–634 (2001).

    CAS  PubMed  Google Scholar 

  72. Ookuma, S., Fukuda, M. & Nishida, E. Identification of a DAF-16 transcriptional target gene, scl-1, that regulates longevity and stress resistance in Caenorhabditis elegans. Curr. Biol. 13, 427–431 (2003).

    CAS  PubMed  Google Scholar 

  73. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell. 11, 619–633 (2003).

    CAS  PubMed  Google Scholar 

  74. Lin, K., Hsin, H., Libina, N. & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nature Genet. 28, 139–145 (2001).

    CAS  PubMed  Google Scholar 

  75. Janssens, S. & Beyaert, R. A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends Biochem. Sci. 27, 474–482 (2002).

    CAS  PubMed  Google Scholar 

  76. Shin, T. H. et al. MOM-4, a MAP kinase kinase kinase-related protein, activates WRM-1/LIT-1 kinase to transduce anterior/posterior polarity signals in C. elegans. Mol. Cell. 4, 275–280 (1999).

    CAS  PubMed  Google Scholar 

  77. Meneghini, M. D. et al. MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature 399, 793–797 (1999).

    CAS  PubMed  Google Scholar 

  78. Ishitani, T. et al. The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature 399, 798–802 (1999).

    CAS  PubMed  Google Scholar 

  79. Ishitani, T. et al. The TAK1–NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/β-catenin signaling. Mol. Cell. Biol. 23, 131–139 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Koga, M., Zwaal, R., Guan, K. L., Avery, L. & Ohshima, Y. A Caenorhabditis elegans MAP kinase kinase, MEK-1, is involved in stress responses. EMBO J. 19, 5148–5156 (2000). Evidence of a role for a JNK pathway in an organismal stress response.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Villanueva, A. et al. jkk-1 and mek-1 regulate body movement coordination and response to heavy metals through jnk-1 in Caenorhabditis elegans. EMBO J. 20, 5114–5128 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tan, M. W. Genetic and genomic dissection of host–pathogen interactions using a P. aeruginosaC. elegans pathogenesis model. Pediatr. Pulmonol. 32, 96–97 (2001).

    Google Scholar 

  83. Mallo, G. V. et al. Inducible antibacterial defence system in C. elegans. Curr. Biol. 12, 1209–1214 (2002). The first indication that worms have inducible innate immune responses, with the identification of genes that are upregulated by infection.

    CAS  PubMed  Google Scholar 

  84. Mochii, M., Yoshida, S., Morita, K., Kohara, Y. & Ueno, N. Identification of transforming growth factor-β-regulated genes in Caenorhabditis elegans by differential hybridization of arrayed cDNAs. Proc. Natl Acad. Sci. USA 96, 15020–15025 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Morita, K., Chow, K. L. & Ueno, N. Regulation of body length and male tail ray pattern formation of Caenorhabditis elegans by a member of TGF-β family. Development 126, 1337–1347 (1999).

    CAS  PubMed  Google Scholar 

  86. Herndon, L. A. et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808–814 (2002).

    CAS  PubMed  Google Scholar 

  87. Bergner, A. et al. Horseshoe crab coagulogen is an invertebrate protein with a nerve growth factor-like domain. Biol. Chem. 378, 283–287 (1997).

    CAS  PubMed  Google Scholar 

  88. Bork, P. The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett. 327, 125–130 (1993).

    CAS  PubMed  Google Scholar 

  89. Ren, P. et al. Control of C. elegans larval development by neuronal expression of a TGF-β homolog. Science 274, 1389–1391 (1996).

    CAS  PubMed  Google Scholar 

  90. Guarente, L. & Kenyon, C. Genetic pathways that regulate ageing in model organisms. Nature 408, 255–262 (2000).

    CAS  PubMed  Google Scholar 

  91. Hekimi, S., Burgess, J., Bussiere, F., Meng, Y. & Benard, C. Genetics of lifespan in C. elegans: molecular diversity, physiological complexity, mechanistic simplicity. Trends Genet. 17, 712–718 (2001).

    CAS  PubMed  Google Scholar 

  92. Patterson, G. I. & Padgett, R. W. TGF β-related pathways: roles in Caenorhabditis elegans development. Trends Genet. 16, 27–33 (2000).

    CAS  PubMed  Google Scholar 

  93. Suzuki, Y. et al. A BMP homolog acts as a dose-dependent regulator of body size and male tail patterning in Caenorhabditis elegans. Development 126, 241–250 (1999).

    CAS  PubMed  Google Scholar 

  94. Yoshida, S., Morita, K., Mochii, M. & Ueno, N. Hypodermal expression of Caenorhabditis elegans TGF-β type I receptor SMA-6 is essential for the growth and maintenance of body length. Dev. Biol. 240, 32–45 (2001).

    CAS  PubMed  Google Scholar 

  95. Morita, K. et al. A Caenorhabditis elegans TGF-β, DBL-1, controls the expression of LON-1, a PR-related protein, that regulates polyploidization and body length. EMBO J. 21, 1063–1073 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Maduzia, L. L. et al. lon-1 regulates Caenorhabditis elegans body size downstream of the dbl-1 TGFβ signaling pathway. Dev. Biol. 246, 418–428 (2002).

    CAS  PubMed  Google Scholar 

  97. McCulloch, D. & Gems, D. Body size, insulin/IGF signaling and aging in the nematode Caenorhabditis elegans. Exp. Gerontol. 38, 129–136 (2003).

    CAS  PubMed  Google Scholar 

  98. Park, J. -O., El-Tarabily, K. A., Ghisalberti, E. L. & Sivasithamparam, K. Pathogenesis of Streptoverticillium albireticuli on Caenorhabditis elegans and its antagonism to soil-borne fungal pathogens. Lett. Appl. Microbiol. 35, 361–365 (2002).

    PubMed  Google Scholar 

  99. Mylonakis, E., Ausubel, F. M., Perfect, J. R., Heitman, J. & Calderwood, S. B. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl Acad. Sci. USA 99, 15675–15680 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hodgkin, J., Kuwabara, P. E. & Corneliussen, B. A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr. Biol. 10, 1615–1618 (2000).

    CAS  PubMed  Google Scholar 

  101. Boutros, M., Agaisse, H. & Perrimon, N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell. 3, 711–722 (2002). An extensive study of fly immunity that combines microarray studies, RNAi and the analysis of mutants, indicating a link between the control of tissue repair and the induction of antimicrobial proteins.

    CAS  PubMed  Google Scholar 

  102. Han, Z. S. & Ip, Y. T. Interaction and specificity of Rel-related proteins in regulating Drosophila immunity gene expression. J. Biol. Chem. 274, 21355–21361 (1999).

    CAS  PubMed  Google Scholar 

  103. Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev. 15, 1900–1912 (2001). A rare direct screen for fly mutants with an altered susceptibility to infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ferrandon, D. et al. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17, 1217–1227 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Manfruelli, P., Reichhart, J. M., Steward, R., Hoffmann, J. A. & Lemaitre, B. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J. 18, 3380–3391 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev. 13, 792–797 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Petersen, U. M. et al. Serpent regulates Drosophila immunity genes in the larval fat body through an essential GATA motif. EMBO J. 18, 4013–4022 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000).

    CAS  PubMed  Google Scholar 

  109. Jonak, C., Okresz, L., Bogre, L. & Hirt, H. Complexity, cross talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol. 5, 415–424 (2002).

    CAS  PubMed  Google Scholar 

  110. Tena, G., Asai, T., Chiu, W. L. & Sheen, J. Plant mitogen-activated protein kinase signaling cascades. Curr. Opin. Plant Biol. 4, 392–400 (2001).

    CAS  PubMed  Google Scholar 

  111. Cohn, J., Sessa, G. & Martin, G. B. Innate immunity in plants. Curr. Opin. Immunol. 13, 55–62 (2001).

    CAS  PubMed  Google Scholar 

  112. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    CAS  PubMed  Google Scholar 

  113. Asai, T. et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977–983 (2002).

    CAS  PubMed  Google Scholar 

  114. Innes, R. W. Mapping out the roles of MAP kinases in plant defense. Trends Plant Sci. 6, 392–394 (2001).

    CAS  PubMed  Google Scholar 

  115. Han, S. J., Choi, K. Y., Brey, P. T. & Lee, W. J. Molecular cloning and characterization of a Drosophila p38 mitogen-activated protein kinase. J. Biol. Chem. 273, 369–374 (1998).

    CAS  PubMed  Google Scholar 

  116. Botella, J. A. et al. The Drosophila cell shape regulator c-Jun N-terminal kinase also functions as a stress-activated protein kinase. Insect Biochem. Mol. Biol. 31, 839–847 (2001).

    CAS  PubMed  Google Scholar 

  117. Inoue, H. et al. A Drosophila MAPKKK, D-MEKK1, mediates stress responses through activation of p38 MAPK. EMBO J. 20, 5421–5430 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Han, Z. S. et al. A conserved p38 mitogen-activated protein kinase pathway regulates Drosophila immunity gene expression. Mol. Cell. Biol. 18, 3527–3539 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Noselli, S. & Agnes, F. Roles of the JNK signaling pathway in Drosophila morphogenesis. Curr. Opin. Genet. Dev. 9, 466–472 (1999).

    CAS  PubMed  Google Scholar 

  120. Ramet, M., Lanot, R., Zachary, D. & Manfruelli, P. JNK signaling pathway is required for efficient wound healing in Drosophila. Dev. Biol. 241, 145–156 (2002). Describes the use of flies to understand how an organism responds to physical injury.

    PubMed  Google Scholar 

  121. Ekengren, S. et al. A humoral stress response in Drosophila. Curr. Biol. 11, 714–718 (2001). The first description of the Turandot family.

    CAS  PubMed  Google Scholar 

  122. Sluss, H. K. & Davis, R. J. Embryonic morphogenesis signaling pathway mediated by JNK targets the transcription factor JUN and the TGF-β homologue decapentaplegic. J. Cell. Biochem. 67, 1–12 (1997).

    CAS  PubMed  Google Scholar 

  123. Takekawa, M. et al. Smad-dependent GADD45β expression mediates delayed activation of p38 MAP kinase by TGF-β. EMBO J. 21, 6473–6482 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Yu, L., Hebert, M. C. & Zhang, Y. E. TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J. 21, 3749–3759 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Werner, T. et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 13772–1377 (2000). The identification of the PGRP family that has subsequently been shown to have important roles in fly defences.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Nash, B., Colavita, A., Zheng, H., Roy, P. J. & Culotti, J. G. The forkhead transcription factor UNC-130 is required for the graded spatial expression of the UNC-129 TGF-β guidance factor in C. elegans. Genes Dev. 14, 2486–2500 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sarafi-Reinach, T. R. & Sengupta, P. The forkhead domain gene unc-130 generates chemosensory neuron diversity in C. elegans. Genes Dev. 14, 2472–2485 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. M. Ausubel, A. Brunet, A. Coulson, D. Ferrandon, D. Garsin, J. Hodgkin, J.-L. Imler, K. Matsumoto, R. Padgett, J. Royet, G. Silverman and M.-W. Tan for discussions and/or the communication of results before publication. Work in the laboratory of the authors is supported by the Université de la Méditerranée, the Centre National pour la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM) and the French Ministry of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan J. Ewbank.

Related links

Related links

Databases

Entrez

DAF-2

DAF-16

Imd

Relish

TIG-2

Toll

TLR4

TLR5

TOL-1

UNC-129

UNC-130

FlyBase

Tak1

hep

imd

Mkk4

Toll

Spaetzle

LocusLink

Tlr4

WormBase

daf-2

daf-7

daf-16

pmk-1

pmk-2

nsy-1

sek-1

tig-2

tol-1

unc-43

Further information

Caenorhabditis Genetics Center

Jonathan J. Ewbank's laboratory

Marseille-Génopole post-genomics centre

Michael R. Koelle's laboratory

Protein Families Database of Alignments and HMMs

WormBase

Glossary

MACROPHAGE

A specialized type of white blood cell that can engulf foreign particles and microorganisms.

GRAM NEGATIVE

Bacteria that cannot be coloured with Gram's stain and generally have an lipopolysaccharide-containing outer membrane.

MELANIZATION

A reaction of invertebrates to infection that leads to the production of antimicrobial phenol derivatives and that can involve the encapsulation of a potential pathogen in a melanin envelope.

RNA INTERFERENCE

(RNAi). The specific inactivation of gene expression by a double-stranded RNA molecule.

DAUER

An alternative larval stage that is able to survive adverse conditions.

SIGNALOSOME

A protein complex that is involved in signal transduction.

AUXINS

Plant hormones that control growth.

DORSAL CLOSURE

The concerted movement of epidermal cells that encloses the embryo during early development.

HAEMOCYTES

Specialized blood cells that are important for defence.

AMPHID SENSORY NEURON

A specialized anterior chemosensory neuron.

HYPODERMIS

The external epidermal cell layer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurz, C., Ewbank, J. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet 4, 380–390 (2003). https://doi.org/10.1038/nrg1067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing